www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Inneres Produkt???
Inneres Produkt??? < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inneres Produkt???: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:02 Di 01.02.2005
Autor: MrPink

Hallo, ich habe folgende Aufgaben:

http://www.geocities.com/knusselfuppen/Unbenannt.JPG

Kann mir jemand vielleicht bei einer Aufgabe sagen, ob und warum es sich um ein inneres Produkt oder nicht handelt, die Restlichen versuche ich dann mal alleine

Danke im voraus

        
Bezug
Inneres Produkt???: Antwort
Status: (Antwort) fertig Status 
Datum: 19:19 Di 01.02.2005
Autor: Stefan

Hallo!

Gut, dann mache ich dir die erste und dritte Aufgabe mal in Ansätzen vor.

1) Es gilt ja:

[mm] $\Phi(x,y) [/mm] = [mm] x_{{\cal B}}^T \cdot \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \cdot y_{{\cal B}}$, [/mm]

wobei [mm] $x_{{\cal B}}$ [/mm] bzw. [mm] $y_{{\cal B}}$ [/mm] die Koordinatenvektoren von $x$ bzw. $y$ bezüglich der Basis [mm] ${\cal B}$ [/mm] sind.

Die Bilinearität von [mm] $\Phi$ [/mm] ist offensichtlich, die Symmetrie von [mm] $\Phi$ [/mm] folgt unmittelbar aus der Symmetrie von [mm] $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$. [/mm] Da [mm] $\red{\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}}$ [/mm] aber nicht positiv definit ist, ist auch [mm] $\Phi$ [/mm] nicht positiv definit.

3) Es handelt sich um kein inneres Produkt, da [mm] $\Phi$ [/mm] nicht positiv definit ist.

So gilt für die auf $[-1,1]$ stetige Funktion

$f(x) = [mm] \left\{ \begin{array}{ccc} x & , & x\in[-1,0),\\[5pt] 0 & , & x \in [0,1] \end{array} \right.$ [/mm]

offenbar [mm] $\Phi(f,f)=0$, [/mm] aber $f [mm] \ne [/mm] 0$.

Liebe Grüße
Stefan

Bezug
                
Bezug
Inneres Produkt???: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:39 Di 01.02.2005
Autor: MrPink

Ok, also sind 2 und 4 Innere Produkte:

2:
Ist Bilinear und nat. auch auch symmetrisch und positiv definit

4: Die funktion bildet von [0,1] ab und ist somit auch positiv definit

Bezug
                
Bezug
Inneres Produkt???: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:41 Di 01.02.2005
Autor: MrPink

Ich habe die Antworten jetzt im Internet abgeschickt, aber mir sagt der Test, dass 1.) keine Inneres Produkt ist :-( wieso ???

Bezug
                        
Bezug
Inneres Produkt???: Antwort
Status: (Antwort) fertig Status 
Datum: 19:58 Di 01.02.2005
Autor: Stefan

Hallo!

Weil ich nicht richtig hingeschaut hatte, [sorry]!

Ich habe es jetzt verbessert.

Deine anderen beiden Antworten sind richtig (allerdings müsste 4), insbesondere die positive Definitheit noch besser begründet werden).

Viele Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de