www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Regelungstechnik" - Instabile Strecken
Instabile Strecken < Regelungstechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Regelungstechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Instabile Strecken: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:44 Sa 16.04.2011
Autor: DontCare

Aufgabe
Für folgende instabile Regelstrecke soll die Formel für den Amplituden- und Phasengang aufgestellt werden!
[mm]Go(s) = \bruch{KPS}{-1+sT_1}[/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo!

Dieses Beispiel ist aus dem Buch "Regelungstechnik für Ingenieure" von Serge Zacher und Manfred Reuter. Kapitel 8.5.

Bei obiger Aufgabenstellung habe ich folgendes Problem.

Der Amplitudengang war leicht und stimmt mit dem Buch überein:

[mm]|G(jw)|=\bruch{KPS}{\wurzel(1+(\omega T_1)^2)}[/mm]

Für den Phasengang habe ich folgendes bekommen:

[mm]\varphi(\omega)=-(arctan(-\omega T_1)+\pi) = -\pi+arctan(\omega T_1) [/mm]

das würde mit der Angabe des Autors auch stimmen. Jedoch hat dieser folgendes angegeben:

Zitat: "Phasengang als Differenz zwischen Phasen des Zählers und des Nenners gebildet:
[mm]\varphi(\omega)=arctan(0) - arctan(-\omega T_1) = -\pi+arctan(\omega T_1) [/mm]"

und hierbei stört mich der arctan(0). Meint der Autor das genauso wie ich es gelöst habe oder habe ich etwas grundlegendes übersehen??? habe mir das aufgrund der arctan Funktion hergeleitet die besagt:
[mm] \varphi(\omega) = arctan(\bruch{b}{a})+\pi[/mm]
[mm] a < 0; b \ge 0[/mm]
[mm] a...Realteil; b...Imaginärteil[/mm]


        
Bezug
Instabile Strecken: Antwort
Status: (Antwort) fertig Status 
Datum: 15:29 So 17.04.2011
Autor: fencheltee


> Für folgende instabile Regelstrecke soll die Formel für
> den Amplituden- und Phasengang aufgestellt werden!
>  [mm]Go(s) = \bruch{KPS}{-1+sT_1}[/mm]
>  Ich habe diese Frage in
> keinem Forum auf anderen Internetseiten gestellt.
>  
> Hallo!
>  
> Dieses Beispiel ist aus dem Buch "Regelungstechnik für
> Ingenieure" von Serge Zacher und Manfred Reuter. Kapitel
> 8.5.
>  
> Bei obiger Aufgabenstellung habe ich folgendes Problem.
>  
> Der Amplitudengang war leicht und stimmt mit dem Buch
> überein:
>  
> [mm]|G(jw)|=\bruch{KPS}{\wurzel(1+(\omega T_1)^2)}[/mm]
>  
> Für den Phasengang habe ich folgendes bekommen:
>  
> [mm]\varphi(\omega)=-(arctan(-\omega T_1)+\pi) = -\pi+arctan(\omega T_1)[/mm]
>  
> das würde mit der Angabe des Autors auch stimmen. Jedoch
> hat dieser folgendes angegeben:
>  
> Zitat: "Phasengang als Differenz zwischen Phasen des
> Zählers und des Nenners gebildet:
>  [mm]\varphi(\omega)=arctan(0) - arctan(-\omega T_1) = -\pi+arctan(\omega T_1) [/mm]"
>  
> und hierbei stört mich der arctan(0). Meint der Autor das
> genauso wie ich es gelöst habe oder habe ich etwas
> grundlegendes übersehen??? habe mir das aufgrund der
> arctan Funktion hergeleitet die besagt:

du kannst die übertragungsfunktion ja auch so schreiben:
[mm] G(jw)=\frac{|G_{zaehler}|*e^{j*arg(G_{zaehler})}}{|G_{nenner}|*e^{j*arg(G_{nenner})}} [/mm]
dann ergibt sich
[mm] G(jw)=\frac{|G_{zaehler}|}{|G_{nenner}|}*e^{j*(arg(G_{zaehler})-arg(G_{nenner}))} [/mm]
für den betrag ergibt sich dann
[mm] |G(jw)|=\frac{|G_{zaehler}|}{|G_{nenner}|} [/mm]
und für die phase
[mm] \varphi(jw)=arg(G_{zaehler})-arg(G_{nenner}) [/mm]

da der zähler rein reell ist, bleibt hier arctan(0) stehen, also phase 0.
für den nenner ergibt sich [mm] atan(\frac{\omega T_1}{-1})=-atan(\omega T_1) [/mm]
und da nun nicht eindeutig ist, ob das minus vom zähler oder nenner kommt, muss man sich wie du richtig getan hast, erstmal nachschauen in welchem quadranten man sich befindet und ggf. [mm] \pi [/mm] hinzuaddieren bzw subtrahieren

>  [mm]\varphi(\omega) = arctan(\bruch{b}{a})+\pi[/mm]
>  [mm]a < 0; b \ge 0[/mm]
>  
> [mm]a...Realteil; b...Imaginärteil[/mm]
>  

gruß tee

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Regelungstechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de