www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Steckbriefaufgaben" - Integral-Steckbriefaufgabe
Integral-Steckbriefaufgabe < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral-Steckbriefaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:05 Mi 17.12.2008
Autor: friendy88

Aufgabe
Der Graph einer Funktion 4 Grades der Form: [mm] f(x)=x^4+ax^3+bx^2+cx+d [/mm] hat den Punkt (0/1) als Sattelpunkt.Der Flächeninhalt der Fläche ,die die Tangente durch diesesn Punkt einschließt beträgt 5000 Flächeneinheiten.

Hallo,

ich habe eine kurze Frage.
Eigentlcih hab ich die Aufgabe verstanden und habe für a= -5 raus. Allerdings hatten wir in der Schule auch noch notiert,dass a = 5 sein kann,obwohl es rechnerisch eindeutig -5 ist. Könnte mir jemand erkklären,warum 5 auch möglich ist?

lg

        
Bezug
Integral-Steckbriefaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 00:10 Do 18.12.2008
Autor: reverend

Hallo friendy,
auf den ersten Blick sehen die Angaben ein bisschen spartanisch aus, reichen aber dann doch.
Aus der Angabe des Sattelpunkts lässt sich ermitteln: b=c=0, d=1.
Es bleibt die Funktion [mm] f(x)=x^4+ax^3+1. [/mm]
Die Tangente im Sattelpunkt ist, wie wir von Anfang an wissen, y=1.
Die Angabe der Fläche macht nur Sinn, wenn diese Tangente und die Funktion einen weiteren Schnittpunkt besitzen, es also außer dem Sattelpunkt noch eine Stelle gibt, wo
[mm] x^4+ax^3+1=1 \Rightarrow x^3(x+a)=0 \Rightarrow [/mm] Nullstellen [mm] x_{0,1}=0, x_{0,2}=-a [/mm]

Nun hast Du Deine Integrationsgrenzen. Du findest leicht heraus, dass zwischen den beiden Schnittpunkten mit der Tangenten die Funktion unterhalb der Tangente verläuft und bildest das Integral
[mm] \integral_{0}^{a}{f(x)-1 dx} [/mm]
Hieraus bestimmst Du a nun so, dass der Wert des uneigentlichen Integrals 5000 beträgt.

Zwischenüberlegung: [mm] f_(x,a)=x^4+a^3+1=f_(-x,-a)=x^4-a*(-x)^3+1 [/mm]
Ein Vorzeichenwechsel von a ergibt eine an der y-Achse gespiegelte Funktion. Es muss also zwei Lösungen geben, a und -a. Genau das sagte Dir allerdings auch schon die Auflösung der integrierten Fläche nach a.

Für a habe ich einen ganz anderen Wert heraus, aber ich habe auch nur schnell drübergerechnet:
[mm] a=\pm \bruch{10}{\wurzel[5]{9}} \approx6,44394... [/mm]

Bezug
        
Bezug
Integral-Steckbriefaufgabe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:16 Do 18.12.2008
Autor: friendy88

Danke.
lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de