www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integral
Integral < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral: Im Zweifel
Status: (Frage) beantwortet Status 
Datum: 14:31 Mi 16.07.2014
Autor: NoJoke

Hallo,

es geht um das folgende Integral [mm] \integral{x*sin(\bruch{1}{2}x) dx} [/mm]

Ich habe es versucht mit partieller Integration zu integrieren und ich weiss durch Integralrechnern , dass es falsch ist ich weiss aber nicht was ich falsch mache könnte mir jemand helfen?
Also habe es so gemacht...

f(x)= x   und f'(x)=1
[mm] x*sin(\bruch{1}{2}x) [/mm] -  [mm] \integral{ 1*sin(\bruch{1}{2}x) dx} [/mm]
=  [mm] x*sin(\bruch{1}{2}x) [/mm] - [mm] (-2cos(\bruch{1}{2}x)) [/mm]
Also falls das falsch ist , könnte mir jemand alle schritte mal aufschreiben und erklären? Danke.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 15:07 Mi 16.07.2014
Autor: schachuzipus

Hallo,


sorry - hatte zwischendurch einen Anruf ...

> Hallo,

>

> es geht um das folgende Integral
> [mm]\integral{x*sin(\bruch{1}{2}x) dx}[/mm]

>

> Ich habe es versucht mit partieller Integration zu
> integrieren [ok]

> und ich weiss durch Integralrechnern , dass es
> falsch ist ich weiss aber nicht was ich falsch mache
> könnte mir jemand helfen?
> Also habe es so gemacht...

>

> f(x)= x und f'(x)=1 [ok]
> [mm]x*sin(\bruch{1}{2}x)[/mm] - [mm]\integral{ 1*sin(\bruch{1}{2}x) dx}[/mm]

???

Es ist [mm]\int{f(x)\cdot{}g'(x) \ dx} \ = \ f(x)\cdot{}g(x) \ - \ \int{f'(x)\cdot{}g(x) \ dx}[/mm]

Mit [mm]f(x)=x[/mm] und [mm]g'(x)=\sin\left(1/2x\right)[/mm]

Für den ersten Term also [mm]x\cdot{}\text{Stammfunktion von} \ \sin\left(1/2x\right)[/mm]

>

> = [mm]x*sin(\bruch{1}{2}x)[/mm] - [mm](-2cos(\bruch{1}{2}x))[/mm]
> Also falls das falsch ist , könnte mir jemand alle
> schritte mal aufschreiben und erklären? Danke.
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß

schachuzipus

Bezug
        
Bezug
Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:12 Mi 16.07.2014
Autor: Marcel

Hallo,

> Hallo,
>  
> es geht um das folgende Integral
> [mm]\integral{x*sin(\bruch{1}{2}x) dx}[/mm]
>  
> Ich habe es versucht mit partieller Integration zu
> integrieren und ich weiss durch Integralrechnern , dass es
> falsch ist ich weiss aber nicht was ich falsch mache
> könnte mir jemand helfen?
>  Also habe es so gemacht...
>  
> f(x)= x   und f'(x)=1
>   [mm]x*sin(\bruch{1}{2}x)[/mm] -  [mm]\integral{ 1*sin(\bruch{1}{2}x) dx}[/mm]
>  
> =  [mm]x*sin(\bruch{1}{2}x)[/mm] - [mm](-2cos(\bruch{1}{2}x))[/mm]
> Also falls das falsch ist , könnte mir jemand alle
> schritte mal aufschreiben und erklären? Danke.

Du solltest mal versuchen, den Fehler selbst zu finden:

    [mm] $\int \red{u(x)}*v'(x)dx=\red{u(x)}*v(x)-\int (\red{u(x)})'*v(x)dx$ [/mm]

Jetzt

    [mm] $\integral{\red{x}*sin(\bruch{1}{2}x)dx=x*\underbrace{...}_{\text{Stammfunktion von }v'(x)}=x*\sin(x/2)}-\underbrace{\int v(x)dx}_{{\text{Stammfunktion von }v(x)}}$ [/mm]

P.S. Allgemein:

    [mm] $\int [/mm] x*g(x)dx$

soll bestimmt werden, wenn EINE Stammfunktion [mm] $G(x)\,$ [/mm] von $g(x)$ bekannt ist.

Dann

    [mm] $\int x*g(x)dx=x*G(x)-\int 1*(\int g(x)dx)dx=x*G(x)-\int G(x)dx\,.$ [/mm]

Hinweis: Dabei ist [mm] $\int [/mm] G(x)dx$ eine Stammfunktion von $G(x)$ [also eine Stammfunktion
einer Stammfunktion von [mm] $g(x)\,$]. [/mm]

[Wir beweisen diese Formel noch schnell:
Es ist

    [mm] $(x*G(x)-\int G(x)dx)'=G(x)+x*G'(x)-G(x)=x*G'(x)=x*g(x)\,,$ [/mm]

also der Integrand.
Bei Dir ist das alles sehr schön, denn für feste $a,b [mm] \in \IR$ [/mm] ist die Funktion

    $x [mm] \mapsto \sin(a*x+b)$ [/mm]

sehr leicht zu überschauen (sowohl, was Ableitungen betrifft, aber hier auch
insbesondere, was das Erstellen einer Stammfunktion und das darauffolgende
Erstellen einer Stammfunktion der zuerst erstellten Stammfunktion betrifft.)

Nebenbei: Wenn man

    [mm] $\int \sin(x)dx=-\cos(x)$ [/mm]

weiß, dann kann man mit

    [mm] $\int \cos(x)dx=\int \sin(\pi/2-x)dx$ [/mm]

und der Substitutionsmethode auch

    [mm] $\int \cos(x)dx=-\sin(x)$ [/mm] (wegen [mm] $\sin(x)=\cos(\pi/2-x)$) [/mm]

folgern.

Beachte übrigens: In der Zeile

    [mm] $\int x*g(x)dx=x*G(x)-\int 1*(\int g(x)dx)dx=x*G(x)-\int [/mm] G(x)dx$

ist [mm] $G(x)=\int [/mm] g(x)dx$ zu benutzen - also "die zuerst gefundenen Stammfunktion
zu [mm] $g(x)\,$" [/mm] - diese darf dort nicht um eine Konstante verändert werden.]

Gruß,
  Marcel

Bezug
                
Bezug
Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:41 Mi 16.07.2014
Autor: NoJoke

u=x  u´=1                  
[mm] v'=sin(\bruch{1}{2}x) v=-2cos(\bruch{1}{2}x) [/mm]  

= x*-2cos [mm] (\bruch{1}{2}x) [/mm]  - [mm] \integral 1*-2cos(\bruch{1}{2}x) [/mm] dx
= x*-2cos [mm] (\bruch{1}{2}x) [/mm] - ( -4sin [mm] (\bruch{1}{2}x)) [/mm]
=  [mm] -2x*cos(\bruch{1}{2}x)+ [/mm] 4sin [mm] (\bruch{1}{2}x) [/mm]

Bezug
                        
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 15:42 Mi 16.07.2014
Autor: fred97


> u=x  u´=1                  
> [mm]v'=sin(\bruch{1}{2}x) v=-2cos(\bruch{1}{2}x)[/mm]  
>
> = x*-2cos [mm](\bruch{1}{2}x)[/mm]  - [mm]\integral 1*-2cos(\bruch{1}{2}x)[/mm]
> dx
>  = x*-2cos [mm](\bruch{1}{2}x)[/mm] - ( -4sin [mm](\bruch{1}{2}x))[/mm]
>  =  [mm]-2x*cos(\bruch{1}{2}x)+[/mm] 4sin [mm](\bruch{1}{2}x)[/mm]  


Jetzt passts.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de