www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Integral
Integral < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral: Integrieren
Status: (Frage) beantwortet Status 
Datum: 11:30 Sa 08.01.2005
Autor: Christin_01

Guten Morgen,

ich habe ein kleines Problem mit folgendem Integral:

[mm] \integral_{0}^{1} [/mm] f(x,y) dx

mit

[mm] f(x,y):=\begin{cases} \bruch{x^2-y^2}{(x^2+y^2)^2}, & \mbox{falls}~ x,y \not= (0,0) \\ 0, & \mbox{falls} ~x,y = (0,0) \end{cases} [/mm]

Es wäre nett, wenn mir einer nur sagen könnte welche Regel ich anweden soll, dann probiere ich mit der weiter, weil bis jetzt hat mich keine zum Ziel geführt.

Schon mal Danke.

Viele Grüße
Christin



        
Bezug
Integral: tipp
Status: (Antwort) fertig Status 
Datum: 13:50 Sa 08.01.2005
Autor: andreas

hi

nur ein kleiner tipp:

berechne mal [m] \frac{\textrm{d}}{\textrm{d}x} \left( \frac{-x}{x^2+y^2} \right) [/m]

grüße
andreas

Bezug
                
Bezug
Integral: Frage zum Tipp
Status: (Frage) beantwortet Status 
Datum: 14:44 Sa 08.01.2005
Autor: Christin_01

Hi Andreas,

danke!

Ich habe jetzt mal aber eine allgemeine Frage, wie sieht man sowas? Ist es Übung und hattest du auch etwas rumprobiert? Ich hatte echt alles probiert, Partielle Integration, Partiallbruchzerlegung, usw...
und kam nicht zum Ziel...

VG
Christin

Bezug
                        
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 17:23 So 09.01.2005
Autor: andreas

hi

ehrlich gesagt habe ich das nicht gerechnet, sondern gewusst, da ich auch schonmal das selbe problem hatte (es geht wohl darum zu zeigen, dass man fubini nicht auf alles und jeden anweden kann ...?).

wenn man das berechnen will, würde ich ganz stark auf partialbruchzerlegung tippen, habe es aber nicht zu ende gerechnet:

[m] \frac{x^2-y^2}{(x^2 + y^2)^2} = \frac{1}{x^2 + y^2} - \frac{2y^2}{(x^2 + y^2)^2} [/m]

kannst du ja gerne mal probieren, wenn du keine vom himmel gefallenen ergebnisse abgeben willst :-).


grüße
andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de