www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integral
Integral < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral: Exponentialfunktion
Status: (Frage) beantwortet Status 
Datum: 20:06 Fr 27.04.2012
Autor: DasBaerchen

Aufgabe
Berechnen Sie:
[mm] [mm] \frac{1}{\wurzel{2 \pi h}} \wurzel[4]{\frac{2}{ \pi}} \wurzel{\frac{s}{h}} \int_{-\infty}^{\infty} e^{i p x/h} e^{\frac{-i p^2 t}{2 m h}} e^{- \frac{s^2}{h^2} (p-p0)^2}\, [/mm] dp

Hey Leute!

Ich hab komm da gerade irgenwie nicht weiter - ich hoffe jemand kann mir vielleicht weiterhelfen :)

also ich hab erst mal auf ein vollständiges Quadrat erweitert - damit wird die Exponentialfunktion zu:

[mm] [mm] e^{-\frac{s^2}{h^2} (p-p0)^2 +(i \wurtzel{ \frac{i t}{2 m h}} p - \frac{1}{2} \wurzel{\frac{2m}{t}} \wurzel{\frac{i}{h}} x)^2 - \frac{1}{2} \frac{m}{t} \frac{i}{h} x^2} [/mm]

also noch zwei Terme die von p abhängen.
Irgenwie muss ich das jetzt mit Gaussintegralen lösen - aber ich weiß nicht genau wie ich das anfangen soll - kann mir jemand möglicherweise einen Tipp geben?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Liebe Grüße
DasBaerchen

        
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 20:19 Fr 27.04.2012
Autor: MathePower

Hallo DasBaerchen,

[willkommenmr]

> Berechnen Sie:
>  [mm][mm]\frac{1}{\wurzel{2 \pi h}} \wurzel[4]{\frac{2}{ \pi}} \wurzel{\frac{s}{h}} \int_{-\infty}^{\infty} e^{i p x/h} e^{\frac{-i p^2 t}{2 m h}} e^{- \frac{s^2}{h^2} (p-p0)^2}\,[/mm] dp Hey Leute! Ich hab komm da gerade irgenwie nicht weiter - ich hoffe jemand kann mir vielleicht weiterhelfen :) also ich hab erst mal auf ein vollständiges Quadrat erweitert - damit wird die Exponentialfunktion zu: [mm][mm]e^{-\frac{s^2}{h^2} (p-p0)^2 +(i \wurtzel{ \frac{i t}{2 m h}} p - \frac{1}{2} \wurzel{\frac{2m}{t}} \wurzel{\frac{i}{h}} x)^2 - \frac{1}{2} \frac{m}{t} \frac{i}{h} x^2}[/mm] > [/mm][/mm]


Schreibe das jetzt in der Form [mm]e^{\alpha*p^{2}+\beta*p+\gamma}[/mm]

Dann kannst Du für den Exponenten quadratische Ergänzung anwenden
und durch eine oder mehrere Substitutionen auf Gaussintegrale zurückführen.


> [mm][mm]also noch zwei Terme die von p abhängen.[/mm][/mm]
> [mm][mm] Irgenwie muss ich das jetzt mit Gaussintegralen lösen - aber ich weiß nicht genau wie ich das anfangen soll - kann mir jemand möglicherweise einen Tipp geben?[/mm][/mm]
> [mm][mm] Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.[/mm][/mm]
> [mm][mm] [/mm][/mm]
> [mm][mm]Liebe Grüße[/mm][/mm]
> [mm][mm] DasBaerchen [/mm][/mm]


Gruss
MathePower

Bezug
                
Bezug
Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:49 Fr 27.04.2012
Autor: DasBaerchen

Erst mal danke für die schnelle Antwort!

und zur quadratischen Ergänzung  - ich dachte das hätte ich schon getan :)

mein Integral hat jetzt die Form

[mm]Konstante [mm] \integral_{-\infty}^{\infty}{e^{-a(p-p0)^2 + ( b p + c)^2 } dp} [/mm]

meine Frage wäre jetzt: gibt es da irgendetwas wie eine Formel oder muss ich das partiell integrieren?
Liebe Grüße

Bezug
                        
Bezug
Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:57 Fr 27.04.2012
Autor: DasBaerchen

hmmm... hab das mit den Symbolen noch nicht ganz drauf - das obige sollte eine Frage sein - ich weiß nur nicht wie ich den Status ändere...

Bezug
                                
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 21:06 Fr 27.04.2012
Autor: leduart

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo
sowas tippt man mit vereinfachten Konstanten in wolfram alpha ein
dann kriegst du \intergral{e^{-(ax+b)^2}=\wurzel{\pi}/2a*erf(ax-b)
erf ist die sog errorfunktion und bei unendlich 0.5 bei -\unendlich -0.5
Gruss leduart


Bezug
                                        
Bezug
Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:21 Fr 27.04.2012
Autor: DasBaerchen

und wie kann man vorgehen wenn man das von hand ausrechnen will?
oder ist das zu aufwändig?
Liebe Grüße

Bezug
                                                
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 21:33 Fr 27.04.2012
Autor: leduart

Hallo
wie rechnest du [mm] e^x [/mm] "per Hand" aus? Kannst du nicht, bzw nur weil dein TR zufällig die e- fkt einprogrammiert hat!
man muss eben wissen, dass man beim Integrieren von [mm] e^{-ax^2} [/mm] immer auf die erf stößt, und da die die statistiker viel brauchen, ist sie auch schon vertafelt, wenn auch nicht grade in deinem TR. die Formel die ich dir anegeben habe gehört halt zum Werkzeug.
was du per hand kannst ist so zu substituieren, dass nur das integral über [mm] e^{-u^2} [/mm] bleibt .
Gruss leduart
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de