www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integral 0, so auch funktion 0
Integral 0, so auch funktion 0 < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral 0, so auch funktion 0: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:16 Mi 04.02.2009
Autor: MissPocahontas

Aufgabe
Seien a,b [mm] \in [/mm] R mit a<b und sei f: [a,b] --> [mm] [0,\infty) [/mm] eine stetige Funktion. Zeigen Sie: Ist [mm] \integral_{a}^{b}{f(t) dt} [/mm] = 0, so ist f [mm] \equiv [/mm] 0.

Hey,

ich habe versucht diese Augabe indirekt mit dem Mittelwertsatz der Integralrechnung zu beweisen, das ging jedoch schief, da ich ja nur herauskriege, dass f einmal 0 sein muss und nicht immer... ich wollte versuchen, dass ganze irgendwie nach oben abzuschätzen, aber dafür fehlt mir die richtige Idee. Hat jemand von euch eine Idee?

Liebe Grüße

        
Bezug
Integral 0, so auch funktion 0: Antwort
Status: (Antwort) fertig Status 
Datum: 15:20 Mi 04.02.2009
Autor: fred97

Schau mal hier:




FRED

Bezug
                
Bezug
Integral 0, so auch funktion 0: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:33 Mi 04.02.2009
Autor: MissPocahontas

Lieben Dank. Ich hätt noch ne Frage dazu. Wenn man auf die Stetigkeit verzichtet und nur vorraussetzt dass f integrierbar is, wird die aussage ja falsch. Wäre:

f(x) = 0, wenn [mm] x\not=1, x\not=3 [/mm]
          1, wenn x = 3
          3, wenn x = 1
ein Gegenbeispiel für diese Behauptung? Also dass dieses Beispiel zeigt, dass die Aussage dann falsch wird?

Bezug
                        
Bezug
Integral 0, so auch funktion 0: Antwort
Status: (Antwort) fertig Status 
Datum: 16:35 Mi 04.02.2009
Autor: fred97


> Lieben Dank. Ich hätt noch ne Frage dazu. Wenn man auf die
> Stetigkeit verzichtet und nur vorraussetzt dass f
> integrierbar is, wird die aussage ja falsch. Wäre:
>  
> f(x) = 0, wenn [mm]x\not=1, x\not=3[/mm]
>            1, wenn x = 3
>            3, wenn x = 1
>  ein Gegenbeispiel für diese Behauptung? Also dass dieses
> Beispiel zeigt, dass die Aussage dann falsch wird?



Du siehst alles richtig ! Ist Dir auch klar, dass die von dir angegebene Funktion  tatsächlich auch integrierbar ist ?

FRED

Bezug
                                
Bezug
Integral 0, so auch funktion 0: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:58 Mi 04.02.2009
Autor: MissPocahontas

Ja, diese Funktion ist tatsächlich integrierbar, denn wenn ich ein Integral an endlich vielen Stellen abändere, dann ändert sich der Wert des Integrals doch nicht, ist das korrekt so?

Bezug
                                        
Bezug
Integral 0, so auch funktion 0: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:02 Mi 04.02.2009
Autor: fred97

Ja, Du hast die Funktion konstant = 0 an 2 Stellen abgeändert.

Damit ist die neue Fkt. wieder integrierbar

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de