www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Integral Mit Satz von Gauß
Integral Mit Satz von Gauß < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral Mit Satz von Gauß: Berechnung mit ZylKo
Status: (Frage) beantwortet Status 
Datum: 17:16 Do 05.08.2010
Autor: Riesenradfahrrad

Aufgabe
Wir betrachten einen Zylinder (Radius $R$) um die $z$-Achse mit Position [mm] $-h\leq z\leq [/mm] h$.
Dieser werde von einem Fluss [mm] $\vec E(\vec x)=(\alpha*x^3,\beta y^2,0)$ [/mm] durchströmt. Mit dieser Szenerie soll der Gauß'sche Satz
[mm] $$\int_V\mathrm d^3x\Nabla\,\vec E=\int_{\partial V}\mathrm d\vec f\,\vec [/mm] E$$
verifiziert werden.

Hallo!

ich soll den Satz von Gauß an obigen Beispiel testen. Ich substituiere dazu mit Zylinderkoordinaten und benutze zugehörige Divergenz und erhalte links:

[mm] $\int_{r=0}^R\int_{z=-h}^h\int_{\varphi=0}^{2\pi}\left(\frac{1}{4}r^3\alpha\cos(\varphi)^4+\frac{1}{3}r^2\beta\sin(\varphi)^3-\alpha r^3\frac{\partial(cos(\varphi)^3\sin(\varphi))}{\partial \varphi}+\beta r^2\frac{ \partial(\sin(\varphi)^2´\cos(\varphi))}{\partial \varphi}\right)\mathrm d\varphi\mathrm dz\mathrm [/mm] dr$

Ich bekomme [mm] $\frac{3}{32}\alpha\pi hR^4$ [/mm] heraus, aber auf der rechten Seiten mit dem Flächenintegral

[mm] $\int_{z=-h}^h\int_{\varphi=0}^{2\pi}( -\alpha R^4\cos(\varphi)^4\sin(\varphi) -\beta R^3\sin(\varphi)^4)d\varphi\mathrm [/mm] dz$

- wobei [mm] $\vec [/mm] n=(x,y,0)$ auf der Mantelfläche, Deckel und Bodenfläche des Zylinders bringen wegen [mm] $\vec n_{Boden}\perp \vec [/mm] E$ keinen Beitrag (in $z$-Richtung fließt ja auch nix) -

bekomme ich [mm] $\frac{3}{2}h \beta\pi R^3$. [/mm]

Ich weiß, dass es ne Formelschlacht ist, wär deshalb besonders nett, wenn mal jemand drauf schauen könnt und mir sagen kann was ich falsch mach.

Herzlichen Gruß,
Lorenz

        
Bezug
Integral Mit Satz von Gauß: Antwort
Status: (Antwort) fertig Status 
Datum: 20:28 Do 05.08.2010
Autor: MathePower

Hallo Riesenradfahrrad,

> Wir betrachten einen Zylinder (Radius [mm]R[/mm]) um die [mm]z[/mm]-Achse mit
> Position [mm]-h\leq z\leq h[/mm].
>  Dieser werde von einem Fluss [mm]\vec E(\vec x)=(\alpha*x^3,\beta y^2,0)[/mm]
> durchströmt. Mit dieser Szenerie soll der Gauß'sche Satz
>  [mm]\int_V\mathrm d^3x\Nabla\,\vec E=\int_{\partial V}\mathrm d\vec f\,\vec E[/mm]
>  
> verifiziert werden.
>  Hallo!
>  
> ich soll den Satz von Gauß an obigen Beispiel testen. Ich
> substituiere dazu mit Zylinderkoordinaten und benutze
> zugehörige Divergenz und erhalte links:
>  
> [mm]\int_{r=0}^R\int_{z=-h}^h\int_{\varphi=0}^{2\pi}\left(\frac{1}{4}r^3\alpha\cos(\varphi)^4+\frac{1}{3}r^2\beta\sin(\varphi)^3-\alpha r^3\frac{\partial(cos(\varphi)^3\sin(\varphi))}{\partial \varphi}+\beta r^2\frac{ \partial(\sin(\varphi)^2´\cos(\varphi))}{\partial \varphi}\right)\mathrm d\varphi\mathrm dz\mathrm dr[/mm]


Hier mußt Du zuerst die Divergenz des Vektorfeldes [mm]\vec E(\vec x)[/mm]
berechnen und dann erst die Parametrisierung einsetzen.

Das Volumenelement transformiert sich in Zylinderkoordinaten so:

[mm]dV \ = \ r \ dr \ d\varphi \ dz[/mm]

Dann ist

[mm]}\integral_{V}^{}{\operatorname{div}} \ \vec E(\vec x) \ dV[/mm]

zu berechnen.


>  
> Ich bekomme [mm]\frac{3}{32}\alpha\pi hR^4[/mm] heraus, aber auf der
> rechten Seiten mit dem Flächenintegral
>  
> [mm]\int_{z=-h}^h\int_{\varphi=0}^{2\pi}( -\alpha R^4\cos(\varphi)^4\sin(\varphi) -\beta R^3\sin(\varphi)^4)d\varphi\mathrm dz[/mm]
>  
> - wobei [mm]\vec n=(x,y,0)[/mm] auf der Mantelfläche, Deckel und
> Bodenfläche des Zylinders bringen wegen [mm]\vec n_{Boden}\perp \vec E[/mm]
> keinen Beitrag (in [mm]z[/mm]-Richtung fließt ja auch nix) -
>  
> bekomme ich [mm]\frac{3}{2}h \beta\pi R^3[/mm].


Hier ist zunächst das Skalarprodukt des Vektorfeldes [mm]\vec E(\vec x)[/mm]
mit dem Normeneinheitsvektor der berandeten Fläche zu bilden.

Bleibt noch das Flächenelement [mm]\mathrm dA[/mm]

Ist S die Parametrisierung der berandeten Fläche, dann gilt:

[mm]\mathrm dA=\wurzel{\vmat{\begin{matrix} \bruch{\partial S}{\partial \varphi} \* \bruch{\partial S}{\partial \varphi} & \bruch{\partial S}{\partial \varphi} \* \bruch{\partial S}{\partial z} \\ \bruch{\partial S}{\partial \varphi} \* \bruch{\partial S}{\partial z} & \bruch{\partial S}{\partial z} \* \bruch{\partial S}{\partial z}\end{matrix} } } \ d\varphi \ dz[/mm]

Dann ist

[mm]\integral_{\partial V}^{}<\vec E,n> \ dA[/mm]

zu berechnen.


>
> Ich weiß, dass es ne Formelschlacht ist, wär deshalb
> besonders nett, wenn mal jemand drauf schauen könnt und
> mir sagen kann was ich falsch mach.
>  
> Herzlichen Gruß,
>  Lorenz


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de