www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integral (Substitution)
Integral (Substitution) < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral (Substitution): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:46 Di 25.01.2005
Autor: blacksock

hallo,

ich brauche hilfe bei folgendem integral:

integral dx / [mm] ((x-4)^2 [/mm] * (x-3))

muss ja mit hilfe von substitition gehen. was aber wird substituiert? der ganze nenner?

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: www.matheboard.de

        
Bezug
Integral (Substitution): Partialbruchzerlegung!
Status: (Antwort) fertig Status 
Datum: 17:02 Di 25.01.2005
Autor: Loddar

Hallo blacksock,

auch Dir hier [willkommenmr] !!!



> integral dx / [mm]((x-4)^2[/mm] * (x-3))
> muss ja mit hilfe von substitition gehen. was aber wird
> substituiert? der ganze nenner?

Leider ist Deine Funktion nicht eindeutig erkennbar ...
Benutze doch bitte das nächste mal unseren Formel-Editor ...


Ich nehme mal an, Du meinst diese Funktion:
[mm] $\integral_{}^{} {\bruch{dx}{(x-4)^2 * (x-3)}} [/mm] \ = \ [mm] \integral_{}^{} {\bruch{1}{(x-4)^2 * (x-3)}dx} [/mm] $


In diesem Fall kommst Du mit einer Substitution nicht weiter.
Hier geht es weiter mit einer Partialbruchzerlegung:
[mm] $\bruch{1}{(x-4)^2 * (x-3)} [/mm] \ = \ [mm] \bruch{A}{x-4} [/mm] + [mm] \bruch{B}{x-4} [/mm] + [mm] \bruch{C}{x-3}$ [/mm]


Kommst Du nun alleine weiter?

Loddar


Bezug
                
Bezug
Integral (Substitution): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:07 Di 25.01.2005
Autor: blacksock

hallo,

genau die funktion meine ich. allerdings komme ich mit der partialbruchzerlegung nicht weiter...

kannst du mir vielleicht noch einen lösungsansatz geben?

danke!

Bezug
                        
Bezug
Integral (Substitution): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:00 Mi 26.01.2005
Autor: Paulus

Hallo

das hat sich ja mit albertos Antwort erledigt.

MfG  Paul

Bezug
        
Bezug
Integral (Substitution): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:06 Di 25.01.2005
Autor: alberto

Hy,

habe deine Frage nicht genau verstanden. Suchst du die Stammfunktion F(x) aus folgenden Integral f(x)= Integral ((4x-4)²*(x-3)) dx

Grüße alberto

Bezug
                
Bezug
Integral (Substitution): Verstanden?
Status: (Antwort) fertig Status 
Datum: 17:38 Di 25.01.2005
Autor: MathePower

Hallo,

Loddar hat die Funktion so zerlegt:

[mm]\frac{1} {{\left( {x - 4} \right)^{2} \;\left( {x\; - \;3} \right)}}\; = \;\frac{A} {{x\; - \;4}}\; + \;\frac{B} {{\left( {x\; - \;4} \right)^2 }}\; + \;\frac{C} {{x\; - \;3}}[/mm]

und dann bildet er das Integral hierzu:

[mm]\int {\frac{A} {{x\; - \;4}}\; + \;\frac{B} {{\left( {x\; - \;4} \right)^2 }}\; + \;\frac{C} {{x\; - \;3}}} \;dx[/mm]

Gruß
MathePower

Bezug
                        
Bezug
Integral (Substitution): Ja, ok.
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:17 Di 25.01.2005
Autor: alberto

Danke

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de