www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integral berechnen
Integral berechnen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral berechnen: Tipp
Status: (Frage) beantwortet Status 
Datum: 14:34 So 11.12.2011
Autor: Bobson

Aufgabe
Seien k,a > 0. Berechne durch Differenzieren nach a:
[mm]J(a)= \integral_{0}^{\infty} \bruch{1-cos(ax)}{x}e^{-kx}\, dx [/mm]

Ich steck an der Aufgabe schon seit einer gefühlten Ewigkeit. Kann mir jemand ein Tipp geben wie ich das anfangen sollte?

mfg

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integral berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:48 So 11.12.2011
Autor: MathePower

Hallo Bobson,


[willkommenmr]


> Seien k,a > 0. Berechne durch Differenzieren nach a:
>  [mm]J(a)= \integral_{0}^{\infty} \bruch{1-cos(ax)}{x}e^{-kx}\, dx[/mm]
>  
> Ich steck an der Aufgabe schon seit einer gefühlten
> Ewigkeit. Kann mir jemand ein Tipp geben wie ich das
> anfangen sollte?

>


Steht ja schon da: Differenziere nach a:

[mm]\bruch{d}{da}J\left(a\right)=\integral_{0}^{\infty} \bruch{d}{da}\left(\bruch{1-cos(ax)}{x}e^{-kx} \right) \ dx[/mm]

Berechne dann [mm]J'(a)[/mm].


> mfg
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruss
MathePower

Bezug
                
Bezug
Integral berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:19 So 11.12.2011
Autor: Bobson

Das hab ich auch schon versucht und wenn ich mich da jetzt nicht all zu doof angestellt habe, sollte es wie folgt aussehen:

[mm] \integral_{0}^{\infty} \bruch{asin(ax)}{x}e^{-kx}\ dx[/mm]

Ich sehe jetzt aber nicht wie mir das weiter hilft

Bezug
                        
Bezug
Integral berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:23 So 11.12.2011
Autor: MathePower

Hallo Bobson,

> Das hab ich auch schon versucht und wenn ich mich da jetzt
> nicht all zu doof angestellt habe, sollte es wie folgt
> aussehen:
>  
> [mm]\integral_{0}^{\infty} \bruch{asin(ax)}{x}e^{-kx}\ dx[/mm]
>  


J(a) nach a differenziert ergibt doch folgendes Integral:

[mm]\integral_{0}^{\infty} \bruch{\blue{x}sin(ax)}{x}e^{-kx}\ dx[/mm]

Das vereinfacht sich dann zu:

[mm]\integral_{0}^{\infty} sin(ax)e^{-kx}\ dx[/mm]


> Ich sehe jetzt aber nicht wie mir das weiter hilft


Gruss
MathePower

Bezug
                                
Bezug
Integral berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:10 So 11.12.2011
Autor: Bobson

Na das war ja klar, dass ich da was vergeit hab -.-' ..... Wie dem auch sei, es tut mir leid wenn ich eine dumme Frage nach der anderen stelle aber ich steh immer noch auf dem Schlauch.  Ich hab jetzt [mm] \integral_{}^{}sin(ax) e^{-kx}\ dx =\bruch{e^{-kx}}{a^2+k^2}(-acos(ax)-ksin(ax))[/mm] ausgerechnet aber ich bin mir nicht mal sicher ob es jetzt wirklich nötig war

Bezug
                                        
Bezug
Integral berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:22 So 11.12.2011
Autor: MathePower

Hallo Bobson,

> Na das war ja klar, dass ich da was vergeit hab -.-' .....
> Wie dem auch sei, es tut mir leid wenn ich eine dumme Frage
> nach der anderen stelle aber ich steh immer noch auf dem
> Schlauch.  Ich hab jetzt [mm]\integral_{}^{}sin(ax) e^{-kx}\ dx =\bruch{e^{-kx}}{a^2+k^2}(-acos(ax)-ksin(ax))[/mm]


[ok]


> ausgerechnet aber ich bin mir nicht mal sicher ob es jetzt
> wirklich nötig war


Die Stammfunktion zu bilden war wirklich nötig.

Jetzt gehts an das Auswerten.


Gruss
MathePower

Bezug
                                        
Bezug
Integral berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:26 So 11.12.2011
Autor: Bobson

Kann ich es so machen?

e hoch -(unendl.) ist =0 also J´(a)=0-1/(a²+k²)*(-a*1-0)=a/(a²+k²) und das dann einfach aufleiten?

Bezug
                                                
Bezug
Integral berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:34 So 11.12.2011
Autor: notinX

Hallo,

> Kann ich es so machen?
>  
> e hoch -(unendl.) ist =0 also
> J´(a)=0-1/(a²+k²)*(-a*1-0)=a/(a²+k²) und das dann
> einfach aufleiten?

das Ergebnis stimmt. Falls Du mit 'aufleiten' integrieren meinst - ja das ist der nächste Schritt.

Gruß,

notinX

Bezug
                                                        
Bezug
Integral berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:39 So 11.12.2011
Autor: Bobson

Ok, danke. Das ganze hat mir wirklich geholfen :)

Mfg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de