www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integral berechnen
Integral berechnen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:03 Mo 28.01.2013
Autor: waruna

Aufgabe
[mm] \int\limits_{-\infty}^{\infty}\frac{e^{-i\omega(t-s)}}{\omega^2+\Gamma^2}d\omega [/mm]

Ich versuche obengenannte Integral zu berechnen. Mit Mathematica bekomme ich Antwort:
ConditionalExpression[ E^(-(Abs[s - [mm] t]/Sqrt[(1/g^2)])) Sqrt[1/g^2] \[Pi], [/mm]
s - t [mm] \[Element] [/mm] Reals && Re[g] != 0]
ich würde aber gern aber analytisch das berechnen, um sicher zu sein. Partielle Integration hat bei mir nicht geklappt, vielleicht jemand hat andere Idee? Vielleicht Cauchysche Integralsatz?

        
Bezug
Integral berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:38 Mo 28.01.2013
Autor: MathePower

Hallo waruna,

>
> [mm]\int\limits_{-\infty}^{\infty}\frac{e^{-i\omega(t-s)}}{\omega^2+\Gamma^2}d\omega[/mm]
>  Ich versuche obengenannte Integral zu berechnen. Mit
> Mathematica bekomme ich Antwort:
>  ConditionalExpression[ E^(-(Abs[s - [mm]t]/Sqrt[(1/g^2)])) Sqrt[1/g^2] \[Pi],[/mm]
> s - t [mm]\[Element][/mm] Reals && Re[g] != 0]
>  ich würde aber gern aber analytisch das berechnen, um
> sicher zu sein. Partielle Integration hat bei mir nicht
> geklappt, vielleicht jemand hat andere Idee? Vielleicht
> Cauchysche Integralsatz?


Probier's mit dem Residuensatz .


Gruss
MathePower

Bezug
                
Bezug
Integral berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:23 Mo 28.01.2013
Autor: waruna

Vielen Dank für Tipp, aus Residuumsatz erhalte ich (wenn ich mich nicht irre):
[mm] 2\pi i(\frac{e^{\Gamma(t-s)}}{2i\Gamma}-\frac{e^{-\Gamma(t-s)}}{2i\Gamma})= \int\limits_{-\infty}^{\infty}\frac{e^{-i\omega(t-s)}}{\omega^2+\Gamma^2}d\omega [/mm]

Vorfaktor stimmt (ich habe angenommen, dass [mm] \omega [/mm] i [mm] \Gamma [/mm] reel sind), aber rest nicht so ganz...

Bezug
                        
Bezug
Integral berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:34 Mo 28.01.2013
Autor: MathePower

Hallo waruna,

> Vielen Dank für Tipp, aus Residuumsatz erhalte ich (wenn
> ich mich nicht irre):
>  [mm]2\pi i(\frac{e^{\Gamma(t-s)}}{2i\Gamma}-\frac{e^{-\Gamma(t-s)}}{2i\Gamma})= \int\limits_{-\infty}^{\infty}\frac{e^{-i\omega(t-s)}}{\omega^2+\Gamma^2}d\omega[/mm]
>  
> Vorfaktor stimmt (ich habe angenommen, dass [mm]\omega[/mm] i [mm]\Gamma[/mm]
> reel sind), aber rest nicht so ganz...


Maßgebend für Auswertung mit Hilfe des Residuumssatzes
ist der Ausdruck [mm]-\left(t-s\right)[/mm]


Gruss
MathePower

Bezug
                                
Bezug
Integral berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:01 Mo 28.01.2013
Autor: waruna

Das verstehe ich nicht, warum nur Term mit -(t-s) relevant ist?  

Bezug
                                        
Bezug
Integral berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:21 Mo 28.01.2013
Autor: MathePower

Hallo waruna,


> Das verstehe ich nicht, warum nur Term mit -(t-s) relevant
> ist?  


Weil das Integral von der Bauart

[mm]\integral_{-\infty}^{+\infty}{g\left(w\right)*e^{iaw} \ dw}[/mm]

ist. Zu deren Auswertung ist nur das a von Bedeutung.

Für a > 0 sind die Residuen der oberen Halbebene maßgebend.
Für a < 0 sind die Residuen der unteren Halbebene maßgebend.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de