www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integral bilden
Integral bilden < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral bilden: Hilfe zur Integralbildung
Status: (Frage) beantwortet Status 
Datum: 20:09 Mi 17.02.2010
Autor: f4b

Aufgabe
Bilden Sie die Stammfunktion zu:

[mm] f_{t}(x)=x^2*(ln(x^2)-t) [/mm]  

Hallo,

mir fehlte der komplette Lösungsweg zu dieser Aufgabe.
Zwar weiß ich grob wie man Integrale bildet, aber mit dieser Funktion bin ich überfordert. Es wäre nett, wenn man mir Sie einmal vorrechnen und erklären könnte. Die Lösung ist angeblich: [mm] 1/3x^3*ln(x)-(3t+2/9)*x^3 [/mm]

Vielen Dank

        
Bezug
Integral bilden: Antwort
Status: (Antwort) fertig Status 
Datum: 20:13 Mi 17.02.2010
Autor: Stefan-auchLotti

Hi!

> Bilden Sie die Stammfunktion zu:
>  
> [mm]f_{t}(x)=x^2*(ln(x^2)-t)[/mm]
> Hallo,
>  
> mir fehlte der komplette Lösungsweg zu dieser Aufgabe.
>  Zwar weiß ich grob wie man Integrale bildet, aber mit
> dieser Funktion bin ich überfordert. Es wäre nett, wenn
> man mir Sie einmal vorrechnen und erklären könnte. Die

Du weißt es "grob". Was heißt das? Kennst du Methoden der Integration, ja oder nein?

> Lösung ist angeblich: [mm]1/3x^3*ln(x)-(3t+2/9)*x^3[/mm]
>  
> Vielen Dank

Grüße, Stefan.

Bezug
                
Bezug
Integral bilden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:32 Mi 17.02.2010
Autor: f4b

Also ich kann Integrale bilden von Funktionen, die da lauten:

[mm] (4/3*x+7)^7 [/mm] = [mm] 1/8*3/4*(4/3*x+7)^8 [/mm]

Aber mit dieser verketteten ln-x Funktion bin ich einwenig überfordert.

Bezug
                        
Bezug
Integral bilden: Antwort
Status: (Antwort) fertig Status 
Datum: 23:19 Mi 17.02.2010
Autor: pythagora

Hey,
> Also ich kann Integrale bilden von Funktionen, die da
> lauten:
>  
> [mm](4/3*x+7)^7[/mm] = [mm]1/8*3/4*(4/3*x+7)^8[/mm]

Na, das ist doch schon mal was^^
(http://de.wikipedia.org/wiki/Tabelle_von_Ableitungs-_und_Stammfunktionen)<-- vllt- auch interessant für dich

Wie würdest du denn nun anfangen mit dem ableiten der funktion?? Mach dochmal einen Anfang (muss ja nicht 100%ig stimmen, aber dann wüsste man, wo man weiterhelfen könnte^^)

LG
pythagora

Bezug
        
Bezug
Integral bilden: Antwort
Status: (Antwort) fertig Status 
Datum: 21:50 Mi 17.02.2010
Autor: Raidon


> Bilden Sie die Stammfunktion zu:
>  
> [mm]f_{t}(x)=x^2*(ln(x^2)-t)[/mm]
> Hallo,
>  
> mir fehlte der komplette Lösungsweg zu dieser Aufgabe.
>  Zwar weiß ich grob wie man Integrale bildet, aber mit
> dieser Funktion bin ich überfordert. Es wäre nett, wenn
> man mir Sie einmal vorrechnen und erklären könnte. Die
> Lösung ist angeblich: [mm]1/3x^3*ln(x)-(3t+2/9)*x^3[/mm]
>  
> Vielen Dank

Also, vll hilft es dir, wenn man das Integrall etwas anders schreibt;
[mm] \integral_{}^{}{f(x) dx}=\integral_{}^{}{x*x(ln(x^2)-t) dx} [/mm]
Nun eine Partielle Integration mit [mm]u(x)=x[/mm] und [mm]v'(x)=x*(ln(x^2)-t)[/mm]

v(x) lässt sich hierbei durch die Substitutionsregel berechnen.
MfG, Raidon

Bezug
        
Bezug
Integral bilden: Antwort
Status: (Antwort) fertig Status 
Datum: 09:15 Do 18.02.2010
Autor: fred97

Partielle Integration mit

u(x) = [mm] ln(x^2)-t [/mm] und v'(x) = [mm] x^2 [/mm]

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de