www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Integral komplexe Fkt berechne
Integral komplexe Fkt berechne < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral komplexe Fkt berechne: allg. Vorgehen
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:02 Mo 07.05.2007
Autor: kampfsocke

Aufgabe
Berechnen Sie:

a) [mm] \integral_{|z-1|=1}^{}{\bruch{1}{z^{2}-1}dz} [/mm]

b)  [mm] \integral_{|z|=2}^{}{\bruch{cos( \pi z )}{z^{2}-1}dz} [/mm]

Hallo allerseits,

ich weiß einfach nicht wie man komplexe Integrale berechnet. Denn ich nehme mal z [mm] \in \IC [/mm] an; steht nicht explizit da.

Wenn ich eine holomorphe Funktion über eine Kreisscheibe integriere, müsste ja 0 rauskommen. Also wird die Funktion nicht holomorph sein. Das soll ich aber nicht zeigen.

Wahrscheinlich muss ich eine passende Paramerisierung finden. Die "normele" für eine Kreisscheibe: [mm] \gamma [/mm] (t) = [mm] z_{0}+re^{it} [/mm] (mit r=1 und [mm] z_{0}=1 [/mm]  bringt mich aber auf keinen grünen Zweig.

Die Cauchysche Integralformel f(a)= [mm] \bruch{1}{2\pi i} \integral_{|z-z_{o}=r}^{}{\bruch{f(z)}{z-a} dz} [/mm] kenne ich, weiß aber nicht wie die mir helfen soll, weil ich ja nur f(a) raus bekomme.

Es wäe toll wenn ihr mir den Ansatz sagt, oder die Vorgehensweise. Denn genau da hapert es gerade.

Die b) müsste dann ziemlich ähnlich sein.
Die kriege ich aber hoffentlich selber raus, wenn ich die Vorgehensweise kenne.

Danke für eure Hilfe!

Sara

        
Bezug
Integral komplexe Fkt berechne: Tipp zu a) und b)
Status: (Antwort) fertig Status 
Datum: 19:38 Mo 07.05.2007
Autor: MicMuc

Schreib jeweils den Nenner als Produkt von Linearfaktoren!
Mache dann eine Partialbruchzerlegung und teile das Integral auf.

Da Du die Cauchysche-Integralformel kennst, solltest Du dann auch jeweils auf eine Lösung kommen ...

Bezug
                
Bezug
Integral komplexe Fkt berechne: komisches Ergebnis
Status: (Frage) überfällig Status 
Datum: 20:15 Mo 07.05.2007
Autor: kampfsocke

Hallo, danke für die schnelle Anwort.

mit PBZ bekomme ich [mm] \integral_{|z-1|=1}^{}{\bruch{1}{z^{2}-1} dz} [/mm] = [mm] \bruch{1}{2} \integral_{|z-1|=1}^{}{\bruch{1}{z-1} dz} [/mm] - [mm] \bruch{1}{2} \integral_{|z-1|=1}^{}{\bruch{1}{z+1} dz} [/mm]

Das erste lässt sich schön mit der oben genannten Parametrisierung nach [mm] \pi [/mm] i auflösen, aber beim zweiten sieht es nicht so toll aus:

[mm] \bruch{1}{2} \integral_{|z-1|=1}^{}{\bruch{1}{z+1} dz} [/mm] = [mm] \bruch{1}{2} \integral_{0}^{2\pi}{\bruch{1}{2+e^{it}}*ie^{it} dz} [/mm] = [mm] \bruch{1}{i}*ln(2+e^{it}) [/mm]
und nun die Grenzen eingesetzt: =  [mm] \bruch{1}{i}*ln(2+e^{i2\pi})- \bruch{1}{i}*ln(3) [/mm]
und das sieht ja nicht so schön aus.

Hab ich einen Fehler?

Danke für deine Hilfe,
Sara





Bezug
                        
Bezug
Integral komplexe Fkt berechne: Fehler
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:53 Mo 07.05.2007
Autor: kampfsocke

Die Stammfunktion hat einen kleinen Fehler:

[mm] \bruch{1}{2}\integral_{0}^{2\pi}{\bruch{1}{2+e^{it}}*ie^{it} dt} [/mm] = [mm] \bruch{1}{2}ln(2+e^{it}) [/mm]
also mit Grenzen: [mm] \bruch{1}{2}ln(2+e^{i2\pi})-\bruch{1}{3}ln(3) [/mm]

das ist aber auch nicht besser

Bezug
                        
Bezug
Integral komplexe Fkt berechne: Aufgabe geloest?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:12 Di 08.05.2007
Autor: kampfsocke

Hallo allerseits.
Damit die Aufgabe nicht so verlohren hier steht, poste ich meine (fast) entgieltige Loesung nochmal.

[mm] \integral_{|z-1|=1}^{}{\bruch{1}{z^{2}-1} dz} [/mm] = [mm] \bruch{1}{2} \integral_{|z-1|=1}^{}{\bruch{1}{z-1} dz} [/mm] -  [mm] \bruch{1}{2} \integral_{|z-1|=1}^{}{\bruch{1}{z+1} dz} [/mm]

nach dem Cauchyschen Integralsatz fuer Kreischeiben mit f(z)=1, a=1 gilt:
[mm] \bruch{1}{2} \integral_{|z-1|=1}^{}{\bruch{1}{z-1} dz} [/mm] = [mm] \pii [/mm] f(1) = [mm] \pii [/mm]

[mm] \bruch{1}{2} \integral_{|z-1|=1}^{}{\bruch{1}{z+1} dz} [/mm] =  [mm] \pii [/mm] f(-1) [mm] =\pii [/mm]

Damit waere das gesamtergebnis 0?

Kann das so hinkommen?

Komische Aufgabe.

Viele Gruesse,
Sara

Bezug
                        
Bezug
Integral komplexe Fkt berechne: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:23 Mi 09.05.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de