www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Integral (sinus cosinus)
Integral (sinus cosinus) < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral (sinus cosinus): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:09 Mo 28.04.2008
Autor: Annanna

Aufgabe
seien k,l aus Z mit Betrag (k) [mm] \ne [/mm] Betrag(l)

zeige: [mm] \integral_{0}^{2pi} \sin kx\sin lx\, [/mm] dx  = 0

meine Lösung lautet:

[mm] \integral_{0}^{2pi} \sin kx\sin lx\, [/mm] dx = [sin(kx)*-cos(lx)] - [mm] \integral_{0}^{2pi} \cos (kx)\* [/mm] - cos [mm] (lx)\, [/mm] dx

= [sin(kx)* -cos(lx)] - [- cos(lx)sin(kx)] - [mm] \integral_{0}^{2pi} \sin kx\sin lx\, [/mm] dx

also:

[mm] \integral_{0}^{2pi} \sin kx\sin lx\, [/mm] dx = -  [mm] \integral_{0}^{2pi} \sin kx\sin lx\, [/mm] dx

also:

2  [mm] \integral_{0}^{2pi} \sin kx\sin lx\, [/mm] dx = 0

also:

[mm] \integral_{0}^{2pi} \sin kx\sin lx\, [/mm] dx = 0

Kann man das so abgeben? Das selbe musste ich noch für cos(kx)cos(lx) und nochmal für sin(kx)cos(lx) zeigen. Ich habe alle drei Aufgaben 100 % analog gemacht. Das kommt mir jetzt etwas zu simpel vor deswegen wollt ich mal nachfrage ob man das wirklich so machen darf bzw. ob das wirklich korrekt ist!?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integral (sinus cosinus): Antwort
Status: (Antwort) fertig Status 
Datum: 16:22 Mo 28.04.2008
Autor: Kyrill

Hallo,
deine Lösung ist schon so gut wie richtig und wenn ich mich recht erinnere, dann kann man das auch so einfach machen. Allerdings vermisse ich bei dir die ganzen Konstanten die du ja beim partiellen Ableiten von sin(kx) erhälst. Denn
(sin(kx))' = k*cos(kx)

MFG Kyrill

Bezug
                
Bezug
Integral (sinus cosinus): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:27 Mo 28.04.2008
Autor: Annanna

Uuups....und typisch für mich :)
gut dass du das sagst das wäre sonst sehr ärgerlich geworden :)...vielen Dank

ok, habs jetzt nochmal mit Richtiger Ableitung bzw Stammfunktion gerechnet...ändert ja nix am Beweisprinzip...dann lass ich es jetzt so....also vielen Dank!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de