www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maschinenbau" - Integral trigonometr. Funktion
Integral trigonometr. Funktion < Maschinenbau < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maschinenbau"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral trigonometr. Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:59 Mo 16.04.2018
Autor: ElDon91

Aufgabe
Berechnen Sie [mm] \integral_{\alpha}^{\beta}{f(x) dx}. [/mm] Dabei sei f(x) = [mm] \bruch{sin(x)}{cos(x)-sin(x)+1} [/mm]

Ich habe mich mal an dem Integral versucht. Nach Musterlösung sollte herauskommen: [mm] -\bruch{x}{2}-ln|cos(\bruch{x}{2})-sin(\bruch{x}{2})|_\alpha^\beta [/mm]

Die Funktion ist definiert auf [mm] (\alpha,\beta \in ((2k+\bruch{1}{2})\pi),(2k+1)\pi) \vee (\alpha,\beta \in ((2k+1)\pi),(2k+\bruch{5}{2})\pi), [/mm] k [mm] \in \IZ [/mm]

Nach Anwendung von partieller Integration und Partialbruchzerlegung, wobei ich y = [mm] tan(\bruch{x}{2}), [/mm] dx = [mm] \bruch{2}{1+y^2} [/mm] dy, sin(x) = [mm] \bruch{2y}{1+y^2} [/mm] und [mm] cos(x)=\bruch{1-y^2}{1+y^2} [/mm] substituiert habe, komme ich (vor der Resubstitution) auf

[mm] -tan^{-1}(y)+\bruch{1}{2}ln(y^2+1)-ln(y-1) [/mm] (I)

nun könnte ich natürlich wieder [mm] y=tan(\bruch{x}{2}) [/mm] einsetzen, dann käme ich aber nicht auf das gesucht Musterergebnis, sondern ja auf

[mm] -\bruch{x}{2}+\bruch{1}{2}ln(tan^2(\bruch{x}{2})+1)-ln(tan(\bruch{x}{2})-1) [/mm] (II)

Nun meine Frage: wie kommt man von Ergebnis (I) bzw. (II) auf die Musterlösung? Geschieht dies durch Additionstheoreme oder durch einsetzen und vergleichen der gegebenen Werte für [mm] \alpha [/mm] und [mm] \beta? [/mm]

Vielen Dank :)


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Integral trigonometr. Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 02:55 Mi 18.04.2018
Autor: HJKweseleit

Musterlösung:

[mm] -\bruch{x}{2}-ln|cos(\bruch{x}{2})-sin(\bruch{x}{2})|_\alpha^\beta [/mm]

Deine Lösung nach Rücksubstitution:

[mm] -\bruch{x}{2}+\bruch{1}{2}ln(tan^2(\bruch{x}{2})+1)-ln(tan(\bruch{x}{2})-1) [/mm]

Die Grenzen [mm] \alpha [/mm] und [mm] \beta [/mm] lasse ich mal weg, ebenso die übereinstimmenden [mm] -\bruch{x}{2} [/mm] in beiden Gleichungen.

Da alle Winkel ebenfalls überall [mm] \bruch{x}{2} [/mm] heißen, lasse ich sie einfach weg.

Bleibt zu zeigen:

-ln|cos-sin| = [mm] \bruch{1}{2}ln(tan^2+1)-ln(tan-1), [/mm]   (***)

wobei du beim Integrieren beim ln auch immer die Betragsstriche hättest setzen müssen.

Nun ist aber [mm] tan^2+1 [/mm] = [mm] \bruch{sin^2}{cos^2}+1=\bruch{sin^2+cos^2}{cos^2} [/mm] = [mm] \bruch{1}{cos^2}. [/mm]

Damit wird [mm] \bruch{1}{2}ln(tan^2+1)=\bruch{1}{2}ln(\bruch{1}{cos^2})=\bruch{1}{2}(ln(1)-ln(cos^2))=\bruch{1}{2}(0-2ln(cos))=-ln(cos) [/mm]

Also ist nun die rechte Seite von (***)

-ln(cos) - ln(tan-1) = -(ln(cos)+ln(tan-1)=-ln(cos*(tan-1)) = -ln(sin-cos)
in Übereinstimmung mit der linken Seite von (***).


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maschinenbau"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 1h 31m 2. fred97
UAnaRn/Integral einer Funktion
Status vor 1h 48m 5. Maxi1995
UFuTh/Anwendung der Laurentreihe
Status vor 1h 48m 5. fred97
SRatFktn/Grenzwerte
Status vor 12h 12m 6. Martinius
DiffGlGew/Störfunktion cos(x)
Status vor 1d 1h 18m 5. matux MR Agent
ULinASon/Simplex Transportproblem
^ Seitenanfang ^
www.vorhilfe.de