www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Integral von Sinus
Integral von Sinus < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral von Sinus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:31 Sa 25.03.2006
Autor: Professor

Hallo Leute,

habe folgende Aufgabe nun schon fünf bis sechs mal gerechnet und immer wieder komme ich auf ein falsches Ergebnis.

Es würde mich freuen, wenn mir einer von euch die Augen öffnen könnte.

Sei R := [mm] [0,\bruch{\pi}{2}] \times [0,\bruch{\pi}{2}] [/mm]

Berechnen sie das Integral

[mm] \integral_{R}^{}{sin (x - y) dxdy} [/mm]

Mein Ansatz:

[mm] \integral_{0}^{\bruch{\pi}{2}}{ \integral_{0}^{\bruch{\pi}{2}} sin (x- y) dx dy} [/mm]

[mm] \integral_{0}^{\bruch{\pi}{2}} [/mm] sin (x- y) dx = - cos [mm] (\bruch{\pi}{2} [/mm] - y) - cos y

- cos [mm] (\bruch{\pi}{2} [/mm] - y) - cos y = -1 * (0 * cos y + 1 * sin y) - cos y

-1 * (0 * cos y + 1 * sin y) - cos y = - sin y - cos y

[mm] \integral_{0}^{\bruch{\pi}{2}} [/mm] - sin y - cos y dy = 0 - 1 - (1 - 0)

0 - 1 - (1 - 0) = -2

Die richtige Lösung sollte jedoch 0 sein.

LG

Prof.


        
Bezug
Integral von Sinus: Antwort
Status: (Antwort) fertig Status 
Datum: 22:21 Sa 25.03.2006
Autor: felixf

Hallo Prof!

> habe folgende Aufgabe nun schon fünf bis sechs mal
> gerechnet und immer wieder komme ich auf ein falsches
> Ergebnis.
>  
> Es würde mich freuen, wenn mir einer von euch die Augen
> öffnen könnte.
>  
> Sei R := [mm][0,\bruch{\pi}{2}] \times [0,\bruch{\pi}{2}][/mm]
>  
> Berechnen sie das Integral
>  
> [mm]\integral_{R}^{}{sin (x - y) dxdy}[/mm]
>  
> Mein Ansatz:
>  
> [mm]\integral_{0}^{\bruch{\pi}{2}}{ \integral_{0}^{\bruch{\pi}{2}} sin (x- y) dx dy}[/mm]
>  
> [mm]\integral_{0}^{\bruch{\pi}{2}}[/mm] sin (x- y) dx = - cos
> [mm](\bruch{\pi}{2}[/mm] - y) - cos y

Vorsicht, hier hast du einen Vorzeichenfehler gemacht: hinten muss es $+ [mm] \cos [/mm] y$ heissen und nicht $- [mm] \cos [/mm] y$! Wenn du das aenderst muesste auch $0$ rauskommen (wenn ich in deinen weiteren Rechnungen nix uebersehen hab).

LG Felix


Bezug
                
Bezug
Integral von Sinus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:26 Sa 25.03.2006
Autor: Professor

Hallo,

SORRY, dass ich mich so dumm anstelle, aber irgendwie sitze ich auf der Leitung.

Wieso muß es hinten + cos y heißen?

- cos [mm] (\bruch{\pi}{2} [/mm] - y) - (- cos (- y)) = - cos [mm] (\bruch{\pi}{2} [/mm] - y) - cos y

Danke schon mal für die Hilfe.

Gruß

Prof.


Bezug
                        
Bezug
Integral von Sinus: Antwort
Status: (Antwort) fertig Status 
Datum: 00:22 So 26.03.2006
Autor: leduart

Hallo Prof
cos(-y)=cos(y) guch dir die cos-fkt an, sie ist symmetrisch.
Ausserdem einfacher: [mm] cos(\pi/2-y)=cos(y-\pi/2)=sin(y)! [/mm]
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de