www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Integral von atanh(x)
Integral von atanh(x) < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral von atanh(x): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:11 Do 23.06.2011
Autor: dreamweaver

Aufgabe
Bestimme das Integral von

[mm] \integral{\bruch{1}{1-x^2} dx} [/mm]

Hallo ich komm bei diesem scheinbar einfachen Integral nicht weiter -.-

[mm] \integral{\bruch{1}{1-x^2} dx} [/mm]

Zuerst hab ich substituiert:
$u = [mm] 1-x^2$ [/mm]
$dx = [mm] \bruch{du}{-2x}$ [/mm]

Wieder eingesetzt:

[mm] $-\bruch{1}{2} \integral{\bruch{1}{u} \bruch{1}{x} du}$ [/mm]

Jetz komm ich leider nicht mehr weiter, weil ich jetzt ein $u$ und ein $x$ im Integral habe.
Da ja $du$ steht muss ich nach $u$ integrieren, aber was passiert mit dem [mm] \bruch{1}{x} [/mm] ?
Wird das auch nach $u$ integriert?

Also: [mm] $-\bruch{1}{2}(ln(u) \bruch{u}{x})$ [/mm]

Scheint so aber nicht zu stimmen. Wie lauten hier die Regeln?

Lg

        
Bezug
Integral von atanh(x): Antwort
Status: (Antwort) fertig Status 
Datum: 21:18 Do 23.06.2011
Autor: schachuzipus

Hallo dreamweaver,


> Bestimme das Integral von
>  
> [mm]\integral{\bruch{1}{1-x^2} dx}[/mm]
>  Hallo ich komm bei diesem
> scheinbar einfachen Integral nicht weiter -.-
>  
> [mm]\integral{\bruch{1}{1-x^2} dx}[/mm]
>  
> Zuerst hab ich substituiert:
>  [mm]u = 1-x^2[/mm]
>  [mm]dx = \bruch{du}{-2x}[/mm]
>  
> Wieder eingesetzt:
>  
> [mm]-\bruch{1}{2} \integral{\bruch{1}{u} \bruch{1}{x} du}[/mm]
>  
> Jetz komm ich leider nicht mehr weiter, weil ich jetzt ein
> [mm]u[/mm] und ein [mm]x[/mm] im Integral habe.
>  Da ja [mm]du[/mm] steht muss ich nach [mm]u[/mm] integrieren, aber was
> passiert mit dem [mm]\bruch{1}{x}[/mm] ?
>  Wird das auch nach [mm]u[/mm] integriert?
>  
> Also: [mm]-\bruch{1}{2}(ln(u) \bruch{u}{x})[/mm]

Nene, kein Mischmasch von Variablen:

Mache statt einer Substitution lieber eine Partialbruchzerlegung:

Ansatz: [mm]\frac{1}{1-x^2}=\frac{1}{(1-x)\cdot{}(1+x)}=\frac{A}{1-x}+\frac{B}{1+x}[/mm]

>  
> Scheint so aber nicht zu stimmen. Wie lauten hier die
> Regeln?
>  
> Lg

Gruß

schachuzipus


Bezug
        
Bezug
Integral von atanh(x): Antwort
Status: (Antwort) fertig Status 
Datum: 21:21 Do 23.06.2011
Autor: schachuzipus

Hallo nochmal,

wenn es unbedingt eine Substitution sein soll, dann versuche mal:

[mm] $x=\tanh(u)$ [/mm] Dann ist [mm] $\frac{dx}{du}=1-\tanh^2(u)$ [/mm] ...

Das geht sehr sehr schnell!

Gruß

schachuzipus


Bezug
        
Bezug
Integral von atanh(x): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:32 Do 23.06.2011
Autor: dreamweaver

Ich danke dir schachuzipus!

Mit der Partialbruchzerlegung gehts gleich leichter :D.

Danke für deinen Tip mit der Substitution, mit dieser muss ich es aber nicht rechnen.

Lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de