www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Integral zu x*arctan x
Integral zu x*arctan x < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral zu x*arctan x: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:22 So 25.07.2004
Autor: Jonas_E

Hallo Mathegenies,

zuerst: Ich habe diese Frage in keinem weiteren Forum gestellt
dann:

ich habs leider nicht geschafft, das archiv zu durchwühlen ob diese frage schon mal gestellt wurde, aber ich hoffe mal das ich nicht gegen die forenregeln verstoße wenn ich das einfach mal als neues thema poste (ansonsten bitte einfach ignorieren):

als erstes schonmal vielen dank an alle, die sich hiermit beschäftigen, es handelt sich um das problem der oben genannten stammfunktion:
x*arctan x

mein lösungsansatz sieht so aus:

partiell integrieren:

1/2* x² *arctan x - 1/2* integral von x²/(1+x²) dx

so, das sieht ja schonmal was netter aus, aber dann wurds komplizierter:
(nur das integral betrachtend)
kürzen durch x²:

1/(1+1/x²)

meine idee war es, das ganze auf die ableitung der arctan-funktion -->1/(1+x²) umzubröseln und somit ein einigermaßen einfaches ergebnis zu erhalten, leider ist mir jedoch etwas spät (bei der substitution von 1/x²) aufgefallen, dass dies nicht möglich ist..:-(

der zweite ansatz der "umgekehrten" partiellen integration endete auch nicht viel besser, da die stammfunktion von arctan erneut x*arctan x und ln(1+x²) enthält....
dann kann ich zwar x*arctan x auf die andere seite bringen, aber ln(1+x²) krieg ich trotzdem nicht integriert..:-(

daher wollt ich mal hören, ob es jemand in der weiten welt gibt, der mit weiterhelfen kann...

vielen dank im vorraus und sorry für die etwas umständliche schreibweise (irgendwie klappen die sonderzeichen nicht)
MfG

Jonas Eickholt



        
Bezug
Integral zu x*arctan x: Antwort
Status: (Antwort) fertig Status 
Datum: 19:07 So 25.07.2004
Autor: taenzer

Du musst jetzt eine Partialbruchzerlegung durchführen. Die liefert
[mm]\frac{x^2}{1+x^2}=1-\frac{1}{1+x^2}[/mm]
Das kannst Du nachprüfen, indem Du die $1$ erweiterst und die beiden Brüche dann addierst.
Der Rest lässt sich ganz einfach integrieren.

Bezug
                
Bezug
Integral zu x*arctan x: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:12 So 25.07.2004
Autor: Jonas_E

danke danke, einfacher als gedacht...
schönen sonntag noch
Jonas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de