www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Integralberechnung
Integralberechnung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralberechnung: Frage
Status: (Frage) beantwortet Status 
Datum: 13:55 Mi 26.01.2005
Autor: Moe007

hallo
ich hab hier ein paar Integrale zu berechnen und weiss nicht genau, ob das richitg ist, was ich herausbekommen hab. Kann jemand mir bitte, weiter helfen?
Zu berechnen ist:

[mm] \integral_{0}^{1} [/mm] {tanh(x) dx} =  [mm] \integral_{0}^{1} [/mm] { [mm] \bruch{sinh(x)}{cosh(x)} [/mm] dx} =
[ log(cosh(x))] (grenze von 0 bis 1) = log cosh(1) - log cosh(0) = log (  [mm] \bruch{ e^{2}+1}{2e} [/mm] - 0=  log  [mm] \bruch{1}{2} [/mm] + log( [mm] e^{2}+1)-1= [/mm] log [mm] \bruch{ e^{2}+1}{2}-1 [/mm]

Ist das richitg? kann man das ergebnis noch vereinfachen? Ich hoffe. es rechnet einer nach und kommt auf das gleiche ergebnis wie ich. danke.

Bei diesem Integral hatte ich mehr problem  a [mm] \in [/mm] ]0,1[

[mm] \integral_{0.5}^{a} [/mm] {  [mm] \bruch{1}{ \wurzel{x- x^{2}}}dx}=........................(hier [/mm] folgen schritte mit quadratischer ergaenzung unten im nenner und umformung)=
[mm] 2\integral_{0.5}^{a} [/mm] {  [mm] \bruch{1}{ \wurzel{1-(2(x- \bruch{1}{2}))^{2}}}dx} [/mm]
= [2 arcsin(2x-1)] grenzen von 0.5 bis a =  2 arcsin(2a-1)

Ist das richitig? Ich hab mich voll oft verrechnet und bin dann auf dieses ergebnis gekommen. Ich bitte um korrektur, falls etwas falsch ist.
danke
Moe007

        
Bezug
Integralberechnung: Korrektur
Status: (Antwort) fertig Status 
Datum: 21:01 Mi 26.01.2005
Autor: andreas

hi


> [mm]\integral_{0}^{1}[/mm] {tanh(x) dx} =  [mm]\integral_{0}^{1} { \bruch{sinh(x)}{cosh(x)} dx} = [/mm]
> [ log(cosh(x))] (grenze von 0 bis 1) = log cosh(1) - log
> cosh(0) = log (  [mm]\bruch{ e^{2}+1}{2e}[/mm] - 0=  log  
> [mm]\bruch{1}{2}[/mm] + log( [mm]e^{2}+1)-1=[/mm] log [mm]\bruch{ e^{2}+1}{2}-1 [/mm]
>  
>
> Ist das richitg? kann man das ergebnis noch vereinfachen?
> Ich hoffe. es rechnet einer nach und kommt auf das gleiche
> ergebnis wie ich. danke.

das stimmt! vereinfachen? das ist wohl geschmacksache: ich hätte das ergbnis als [m] -\ln 2 + \ln(\textrm{e}^{-1} + \textrm{e}) [/m] dargestellt, aber ob das wirklich einfacher ist?


> Bei diesem Integral hatte ich mehr problem  a [mm]\in[/mm] ]0,1[
>  
> [mm]\integral_{0.5}^{a}{ \bruch{1}{ \wurzel{x- x^{2}}}dx}=........................(hier[/mm]
> folgen schritte mit quadratischer ergaenzung unten im
> nenner und umformung)=
>   [mm]2\integral_{0.5}^{a} { \bruch{1}{ \wurzel{1-(2(x- \bruch{1}{2}))^{2}}}dx} [/mm]
>  
> = [2 arcsin(2x-1)] grenzen von 0.5 bis a
> arcsin(2a-1)

Richtig muss es heissen:

[mm]\int\limits_{0,5}^a {\frac{1} {{\sqrt {x\; - \;x^2 } }}\;dx\; = \;\left[ {\arcsin (2x - 1)} \right]_{0.5}^a \; = \;\arcsin (2a - 1)} [/mm]

Der Wert, der herauskommt stimmt.


grüße
andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de