www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Integralberechnung
Integralberechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralberechnung : Fläche zweier Funktionen
Status: (Frage) beantwortet Status 
Datum: 12:18 Fr 20.05.2005
Autor: Lady0201

Hallo,

ich habe heute meine Abschlussprüfung in Mathe geschrieben und war mir in einer Aufgabe nicht sicher.
Es musste die Fläche von
f(x) = [mm] 0,25x^4-4x³+18x²-108 [/mm]
und
g(x)= [mm] 0,25x^4+18x²-16x-108 [/mm]
berechnet werden.
Könnte sich jemand bitte mal die Zeit nehmen, diese Aufgabe zu lösen?
Danke im Voraus!
Ach ja, und wenn jemand noch mehr Lust und Zeit hat, könnte er dann mal bitte kontrollieren, ob ich Recht habe, dass die Funktion f(x) keine bewiesenen Extrempunkte besitzt!?
Eure Lady

        
Bezug
Integralberechnung : Dein Lösungsweg?
Status: (Antwort) fertig Status 
Datum: 12:37 Fr 20.05.2005
Autor: Roadrunner

Hallo Lady!


Das ist aber nicht sehr lady-like ... ;-)


> ich habe heute meine Abschlussprüfung in Mathe geschrieben
> und war mir in einer Aufgabe nicht sicher.

"Nicht sicher" heißt doch, Du hast bereits einige eigene Ansätze für diese Aufgabe, oder?

Bitte teile uns diese doch mit und dann gehen wir das gemeinsam durch (im Optimalfall gibts von uns sogar "nur" ein [ok] oder [daumenhoch], weil ja alles stimmt ...)


Wie lauten denn Deine Schnittpunkte?

Als Gesamtfläche erhalte ich jedenfalls (ohne Gewähr):
[mm] $A_{ges.} [/mm] \ = \ 32 \ [FE]$


> Ach ja, und wenn jemand noch mehr Lust und Zeit hat,
> könnte er dann mal bitte kontrollieren, ob ich Recht habe,
> dass die Funktion f(x) keine bewiesenen Extrempunkte
> besitzt!?

Da muß ich Dich leider enttäuschen: hier erhalte ich ein Minimum bei $T \ (0; -108)$

Wie lautet denn Deine erste Ableitung für $f(x)$ ?


Gruß vom
Roadrunner


Bezug
                
Bezug
Integralberechnung : Frage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:39 Fr 20.05.2005
Autor: Lady0201

Ich erhalte eine erste Ableitung von
f'(x)= x³-12x²+18x

Habe meinen Fehler dort allerdings inzwischen gefunden. Leider.

Meine Grenzen für die Integralrechnung sind 2 und -2 .

Ich bin bei der Flächenberechnung auf 64 gekommen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de