www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integralbestimmung
Integralbestimmung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:04 Fr 09.02.2007
Autor: Petite

Aufgabe
Der Teil des Graphen der Funktion f(x)=sinx*cosx, der zwischen den Geraden mit den Gleichungen x=0 und [mm] x=\bruch{\pi}{2} [/mm] liegt, rotiere um die x-Achse.
Berechnen Sie das Volumen des dabei entstehenden Rotationskörpers.

Hier erstmal mein Ansatz:

[mm] V=\pi\integral_{0}^{\bruch{\pi}{2}}{(sinx+cosx)^{2} dx} [/mm]
[mm] V=\pi\integral_{0}^{\bruch{\pi}{2}}{(sin^{2}x+2sinx*cosx+cos^{2}x) dx} [/mm]

nach trigonometrischen Pythagoras: [mm] sin^{2}+cos^{2}=1 [/mm]
[mm] V=\pi\integral_{0}^{\bruch{\pi}{2}}{(1+2sinx*cosx) dx} [/mm]

nun weiß ich nicht, wie ich das Integral von sinx*cosx bilden kann.


Danke für Hilfe.

Diese Frage habe ich in keinem anderen Forum gestellt.



        
Bezug
Integralbestimmung: 2 Wege
Status: (Antwort) fertig Status 
Datum: 15:11 Fr 09.02.2007
Autor: Roadrunner

Hallo Petite!


Heißt die Funktion nun [mm] $\sin(x)\red{*}\cos(x)$ [/mm] oder  [mm] $\sin(x)\red{+}\cos(x)$ [/mm] ?


Jedenfalls kannst Du das Integral [mm] $\integral{2*\sin(x)*\cos(x) \ dx}$ [/mm] auf zwei Wegen lösen.

Entweder durch die Substitution $t \ := \ [mm] \sin(x)$ [/mm] oder durch das Additionstheorem [mm] $2*\sin(x)*\cos(x) [/mm] \ = \ [mm] \sin(2x)$ [/mm] .


Gruß vom
Roadrunner


Bezug
                
Bezug
Integralbestimmung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 15:39 Fr 09.02.2007
Autor: Petite

Da ich ein Binom aufgelöst habe, müsste das ganze ja so erfolgen:

[mm] (sinx+cosx)^{2}=sin^{2}x+2*sinx*cosx+cos^{2}x [/mm]
da:
[mm] (a+b)^{2}=a^{2}+2ab+b^{2} [/mm]

Und leider versteh ich beide deiner Lösungsvorschläge nicht, erstrecht die mit dem Additionstheorem, wo doch keine Addition mehr vorkommt.

Bezug
                        
Bezug
Integralbestimmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:51 Fr 09.02.2007
Autor: angela.h.b.

Hallo,

wie bereits roadrunner und riwe frage auch ich:
welches Integral soll berechnet werden?

sinx*cosx, [mm] (sinx+cosx)^2, [/mm] sinx+cosx  ?

Ich blicke da nicht durch.

Gruß v. Angela

Bezug
                                
Bezug
Integralbestimmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:03 Fr 09.02.2007
Autor: Petite

Ich brauche nur das Integral von sinx * cosx.

Bezug
                        
Bezug
Integralbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:43 Fr 09.02.2007
Autor: leduart

Hallo
Eigentlich hast dus jetzt schon MEHRFACH ueberlesen und die Antwort ist lange da:
Es gilt sinx*cosx=0,5*sin2x   hergeleitet aus Additionstheorem sin(x+x)
und sin2x kannst du wohl integrieren.
also naechstes mal posts genau lesen!
Gruss leduart

Bezug
        
Bezug
Integralbestimmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:13 Fr 09.02.2007
Autor: riwe


> Der Teil des Graphen der Funktion f(x)=sinx*cosx, der
> zwischen den Geraden mit den Gleichungen x=0 und
> [mm]x=\bruch{\pi}{2}[/mm] liegt, rotiere um die x-Achse.
>  Berechnen Sie das Volumen des dabei entstehenden
> Rotationskörpers.
>  Hier erstmal mein Ansatz:
>  
> [mm]V=\pi\integral_{0}^{\bruch{\pi}{2}}{(sinx+cosx)^{2} dx}[/mm]
>  
> [mm]V=\pi\integral_{0}^{\bruch{\pi}{2}}{(sin^{2}x+2sinx*cosx+cos^{2}x) dx}[/mm]
>  
> nach trigonometrischen Pythagoras: [mm]sin^{2}+cos^{2}=1[/mm]
>  [mm]V=\pi\integral_{0}^{\bruch{\pi}{2}}{(1+2sinx*cosx) dx}[/mm]
>  
> nun weiß ich nicht, wie ich das Integral von sinx*cosx
> bilden kann.
>  
>
> Danke für Hilfe.
>  
> Diese Frage habe ich in keinem anderen Forum gestellt.


[mm] f(x)=sinx\cdot [/mm] cosx oder f(x) = sinx + cosx ???
werner

Bezug
                
Bezug
Integralbestimmung: Binom
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:26 Fr 09.02.2007
Autor: Petite

Musste doch als erstes das Binom auflösen: [mm] (sinx+cosx)^{2} [/mm]

[mm] (sinx+cosx)^{2}=(sin^{2}x+2sinx*cosx+cos^{2}x [/mm]
da
[mm] (a+b)^{2}=a^{2}+2ab+b^{2} [/mm]

Bezug
                        
Bezug
Integralbestimmung: Funktion
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:48 Fr 09.02.2007
Autor: clwoe

Hi,

ich glaube du weißt nicht was gemeint ist! Du hast dein f(x) geschrieben als f(x)=sin(x)*cos(x) und hinter deinem Integral hast du aber sin(x)+cos(x) geschrieben. Das hat doch nichts mit der binomischen Formel zu tun!!!

Vielleicht hast du dich schon von Anfang an verschrieben und dir so das Leben schwerer gemacht!

Gruß,
clwoe


Bezug
                                
Bezug
Integralbestimmung: Binom
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:24 Fr 09.02.2007
Autor: Petite

Im Integral ist ein Binom

[mm] V=\pi\integral_{0}^{\bruch{\pi}{2}}{((sinx+cosx)^{2}) dx} [/mm]

Und dieses Binom habe ich nun erstmal aufgelöst:

[mm] V=\pi\integral_{0}^{\bruch{\pi}{2}}{(sin^{2}x+2sinx*cosx+cos^{2}x) dx} [/mm]

und da [mm] sin^{2}+cos^{2}=1 [/mm] nach meinen Tafelwerk sind, fass ich das zusammen, um es mir einfacher zu machen:

[mm] V=\pi\integral_{0}^{\bruch{\pi}{2}}{(1+2sinx*cosx) dx} [/mm]

Das Integral von 1 kann ich selber noch bilden

f(x)=1 --> F(x)=x

weiß aber nicht, wie ich das Integral von 2sinx*cosx bilden kann.

f(x)=2sinx*cosx -->F(x)=?

Bezug
                                        
Bezug
Integralbestimmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:37 Fr 09.02.2007
Autor: schachuzipus

Hallo,

das sollte mit partieller Integration gehen:

[mm] \integral_{0}^{\bruch{\pi}{2}}{(2sinxcosx) dx}=2*\integral_{0}^{\bruch{\pi}{2}}{(sinxcosx) dx} [/mm]

Mit sinx=v(x) und cos(x)=u'(x) und der Regel [mm] \integral{u'(x)*v(x) dx}=u(x)*v(x)-\integral{u(x)*v'(x) dx} [/mm] kannst du dein Integral bestimmen


Gruß

schachuzipus



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de