www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integrale
Integrale < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:04 Do 27.03.2008
Autor: domenigge135

Hallo ich habe mal eine Frage zu den unbestimmten Integralen und den uneigentlichen Integralen.

unbestimmtes Integral: Ist das nicht einfach nur ein Integral, welches weder Ober noch Untersumme hat??? Soll heißen, wenn ich ein unbestimmtes Integral berechnen soll, dann berechne ich nur die Stammfunktion???

uneigentliches Integral: Ist das nicht z.B. [mm] \integral_{a}^{\infty}{f(x) dx}??? [/mm] Wobei ich hier [mm] \infty [/mm] gegen meine Obersumme b ersetze und b selber gegen [mm] \infty [/mm] laufen lasse und letzendlich eine Grenzwertbetrachtung durchführe??? Was für uneigentliche Integrale gibt es denn noch so???

        
Bezug
Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 17:50 Do 27.03.2008
Autor: rainerS

Hallo!

> unbestimmtes Integral: Ist das nicht einfach nur ein
> Integral, welches weder Ober noch Untersumme hat??? Soll
> heißen, wenn ich ein unbestimmtes Integral berechnen soll,
> dann berechne ich nur die Stammfunktion???

Korrekt.

> uneigentliches Integral: Ist das nicht z.B.
> [mm]\integral_{a}^{\infty}{f(x) dx}???[/mm] Wobei ich hier [mm]\infty[/mm]
> gegen meine Obersumme b ersetze und b selber gegen [mm]\infty[/mm]
> laufen lasse und letzendlich eine Grenzwertbetrachtung
> durchführe???

Auch richtig.

> Was für uneigentliche Integrale gibt es denn
> noch so???

Der Integrand selber kann im Integrationsintervall oder an den Grenzen gegen [mm] $\infty$ [/mm] gehen.
Beispiel:

[mm] \integral_0^1 \bruch{1}{\wurzel{x}}\, dx [/mm].

Auch da musst du die untere Grenze durch a ersetzen und a gegen 0 laufen lassen. Das Ergebnis kann endlich oder unendlich sein, vergleiche

[mm] \integral_0^1 \bruch{1}{x^2}\, dx [/mm].

Viele Grüße
   Rainer

Bezug
                
Bezug
Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:42 Mo 31.03.2008
Autor: domenigge135

Ich habe leider noch eine Frage. In einer Aufgabe wurde verlangt, dass man ein Integral aus Divergenz und Konvergenz berechnen soll. Wie mache ich das???

Mit freundlichen Grüßen domenigge135

Bezug
                        
Bezug
Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 12:23 Mo 31.03.2008
Autor: leduart

Hallo
Die Frage müsstest du genauer wiedergeben! So ist sie nicht sehr sinnvoll.
Gruss leduart

Bezug
                                
Bezug
Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:43 Mo 31.03.2008
Autor: domenigge135

Also gut ich habe z.B. [mm] \integral_{1}^{\infty}xsin\bruch{1}{x}dx [/mm] und soll nun die konvergenz und divergenz berechnen. Da ich ja nun eigentlich [mm] \infty [/mm] gegen einen koefizienten (z.B. a) austausche und dieses a gegen [mm] \infty [/mm] laufen lasse, berechne ich doch eigentlich die konvergenz oder Divergenz oder? Also mache ich hier doch eigentlich nichts anderes, als ein uneigentliches Integral zu berechnen.

Bezug
                                        
Bezug
Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 12:56 Mo 31.03.2008
Autor: leduart

Hallo
Du "berechnest" nicht die Divergenz oder Konvergenz, sondern du zeigst, dass das uneigentl. Integral konvergiert bzw. divergiert.
falls es konvergiert kannst du manchmal den GW berechnen.
Noch mal, warum zitierst du , was du aus Aufgaben rausliest, und nicht die Aufgaben. Ich bin sicher, dass in keiner Aufgabe steht :berechne die Divergenz!!
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de