www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integrale
Integrale < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:04 Fr 17.05.2013
Autor: Mopsi

Aufgabe
Berechne folgende Integrale:

1.

​[mm]\int_{}^{}{ \frac{dx}{2x^2-4x+4}}[/mm]


2.

[mm] \int_{0}^{1}{x^2*sinh(x)} dx [/mm]
 



Schönen guten Abend :)

Zu 1:

[mm]\int_{}^{}{ \frac{dx}{2x^2-4x+4}} = \int_{}^{}{ \frac{1}{2x^2-4x+4}}dx[/mm]

Das darf ich doch machen, oder? 
Oder hat das eine spezielle Bedeutung, wenn dx im Zähler steht?

Nebenrechnung:

[mm]\frac{1}{2x^2-4x+4} = (2x^2-4x+4)^{-1}[/mm]


Nun dachte ich das Integral davon ist:

[mm] \int_{}^{}(2x^2-4x+4)^{-1}dx = - \frac{1}{2}(\frac{2}{3}x^3 -2x^2 +4x)^{-2} = \frac{-1}{( \frac{2}{3}x^3-2x^2+4x)^2}[/mm]

Ist das richtig?

Partielle Integration ist hier nicht notwendig, oder?

Mopsi

        
Bezug
Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 18:13 Fr 17.05.2013
Autor: MathePower

Hallo Mopsi,

> Berechne folgende Integrale:
>  
> 1.
>  
> ​[mm]\int_{}^{}{ \frac{dx}{2x^2-4x+4}}[/mm]
>  
>
> 2.
>  
> [mm]\int_{0}^{1}{x^2*sinh(x)} dx [/mm]
>  
>  
>
> Schönen guten Abend :)
>  
> Zu 1:
>  
> [mm]\int_{}^{}{ \frac{dx}{2x^2-4x+4}} = \int_{}^{}{ \frac{1}{2x^2-4x+4}}dx[/mm]
>  
> Das darf ich doch machen, oder?


Ja.


>  Oder hat das eine spezielle Bedeutung, wenn dx im Zähler
> steht?
>  

Nein.


> Nebenrechnung:
>  
> [mm]\frac{1}{2x^2-4x+4} = (2x^2-4x+4)^{-1}[/mm]
>  
>
> Nun dachte ich das Integral davon ist:
>  
> [mm]\int_{}^{}(2x^2-4x+4)^{-1}dx = - \frac{1}{2}(\frac{2}{3}x^3 -2x^2 +4x)^{-2} = \frac{-1}{( \frac{2}{3}x^3-2x^2+4x)^2}[/mm]
>  
> Ist das richtig?
>  


Nein, das ist nicht richtig.


> Partielle Integration ist hier nicht notwendig, oder?

>


Hier ist eine Substitution anzuwenden.

  

> Mopsi


Gruss
MathePower

Bezug
                
Bezug
Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:58 Fr 17.05.2013
Autor: Mopsi

Hallo MathePower :)

> Hier ist eine Substitution anzuwenden.

Alles klar, dann ein neuer Versuch. 

Ich nehme mal an, um eine geeignete Substitution zu finden, benötigt man Erfahrung, oder muss zumindest sehen, dass man das ganze durch die Substitution auf eine Form bringt, von der man das Integral kennt, oder?

Ich kenne zum Beispiel dieses Integral: [mm] \int_{}^{}{ \frac{1}{1+x^2}dx} = arctan(x)[/mm]

Soll ich also versuchen, den Bruch auf diese Form zu bringen?

Ich habe es mal mit x = t - 1 versucht, bin aber gescheitert und bin dem Ganzen, aber glaube ich mit x = t + 1 auf die Spur gekommen.

[mm]\int_{}^{}{ \frac{1}{2(t+1)^2-4(t+1)+4}}dt = \int_{}^{}{ \frac{1}{2t^2+2}}dt = \int_{}^{}{ \frac{1}{2} \frac{1}{t^2+1}}dt = \frac{1}{2} \int_{}^{}{ \frac{1}{t^2+1}}dt = \frac{1}{2}*arctan(x-1)[/mm]

Ist es nun richtig?

Eine wichtige Frage zur Substitution habe ich aber.
Ich habe da jetzt so "selbstverständlich" einfach dt verwendet, aber wenn ich mir einige Beispiele bei Wikipedia anschaue, dann ist es nicht immer einfach dx = dt, oder?

Wie hängt das dt mit der Substitution zusammen?

Vielen Dank!

​Mopsi

Bezug
                        
Bezug
Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 19:09 Fr 17.05.2013
Autor: MathePower

Hallo Mopsi,

> Hallo MathePower :)
>  
> > Hier ist eine Substitution anzuwenden.
>  
> Alles klar, dann ein neuer Versuch.
>  
> Ich nehme mal an, um eine geeignete Substitution zu finden,
> benötigt man Erfahrung, oder muss zumindest sehen, dass
> man das ganze durch die Substitution auf eine Form bringt,
> von der man das Integral kennt, oder?
>  
> Ich kenne zum Beispiel dieses Integral: [mm] \int_{}^{}{ \frac{1}{1+x^2}dx} = arctan(x)[/mm]
>  
> Soll ich also versuchen, den Bruch auf diese Form zu
> bringen?
>  
> Ich habe es mal mit x = t - 1 versucht, bin aber
> gescheitert und bin dem Ganzen, aber glaube ich mit x = t +
> 1 auf die Spur gekommen.
>  
> [mm]\int_{}^{}{ \frac{1}{2(t+1)^2-4(t+1)+4}}dt = \int_{}^{}{ \frac{1}{2t^2+2}}dt = \int_{}^{}{ \frac{1}{2} \frac{1}{t^2+1}}dt = \frac{1}{2} \int_{}^{}{ \frac{1}{t^2+1}}dt = \frac{1}{2}*arctan(x-1)[/mm]
>  
> Ist es nun richtig?
>  


Ja. [ok]


> Eine wichtige Frage zur Substitution habe ich aber.
>  Ich habe da jetzt so "selbstverständlich" einfach dt
> verwendet, aber wenn ich mir einige Beispiele bei Wikipedia
> anschaue, dann ist es nicht immer einfach dx = dt, oder?

>


Ja.

Nun, du hättest hier auch

[mm]x-1=\tan\left(t\right)[/mm]

wählen können.

Dann wäre

[mm]dx= \left( \ 1+\tan^{2}\left(t\right) \ \right) \ dt[/mm]


> Wie hängt das dt mit der Substitution zusammen?
>  
> Vielen Dank!
>  
> ​Mopsi


Gruss
MathePower

Bezug
                                
Bezug
Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:30 Fr 17.05.2013
Autor: Mopsi


> Nun, du hättest hier auch

>

> [mm]x-1=\tan\left(t\right)[/mm]

>

> wählen können.

>

> Dann wäre

>

> [mm]dx= \left( \ 1+\tan^{2}\left(t\right) \ \right) \ dt[/mm]

>

Und wie genau kommt man da jetzt drauf?

Angenommen ich habe [mm]x = t^2[/mm] substituiert, muss ich dann die Ableitung von [mm]t^2[/mm] bilden?

Bei Wikipedia steht sowas:
http://upload.wikimedia.org/math/6/7/7/677aea45dd5e05b4d73f710b3c02dd7e.png
​( siehe http://de.wikipedia.org/wiki/Integration_durch_Substitution )

Also irgendwie scheint es etwas mit der Ableitung am Hut zu haben..

Mopsi

Bezug
                                        
Bezug
Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 19:35 Fr 17.05.2013
Autor: MathePower

Hallo Mopsi,



> > Nun, du hättest hier auch
>  >
>  > [mm]x-1=\tan\left(t\right)[/mm]

>  >
>  > wählen können.

>  >
>  > Dann wäre

>  >
>  > [mm]dx= \left( \ 1+\tan^{2}\left(t\right) \ \right) \ dt[/mm]

>  
> >
>  
> Und wie genau kommt man da jetzt drauf?
>  
> Angenommen ich habe [mm]x = t^2[/mm] substituiert, muss ich dann
> die Ableitung von [mm]t^2[/mm] bilden?
>  


Ja, genau so ist es.


> Bei Wikipedia steht sowas:
>  
> http://upload.wikimedia.org/math/6/7/7/677aea45dd5e05b4d73f710b3c02dd7e.png
>  ​(
> siehe http://de.wikipedia.org/wiki/Integration_durch_Substitution
> )
>  
> Also irgendwie scheint es etwas mit der Ableitung am Hut zu
> haben..
>  
> Mopsi


Gruss
MathePower

Bezug
                                                
Bezug
Integrale: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:57 Fr 17.05.2013
Autor: Mopsi

Okay, verstanden :)

Dankeschön MathePower, ich versuche mich nun mal an der zweiten.

Bezug
        
Bezug
Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:39 Fr 17.05.2013
Autor: Mopsi

2. [mm]\int_{0}^{1}{x^2\cdot{}sinh(x)} dx[/mm]


Hier muss ich nun aber die partielle Integration bemühen, oder?

Hat diese Gleichung eigentlich einen Namen?

[mm]\int_{}^{} f(x) * g'(x) dx = \int_{}^{} f(x) * g(x) - \int_{}^{}f'(x)*g(x)dx[/mm]

Ich setze nun einfach ein:

[mm] \int_{0}^{1}{x^2\cdot{}sinh(x)} dx = \int_{0}^{1} x^2 * cosh(x) - \int_{0}^{1}2x*cosh(x)dx[/mm]

So viel weiter hat dies mich nun nicht gebracht, oder?

Meine Idee wäre jetzt nochmal partielle Integrationen auf das rechte Integral anwenden.

Ist das die richtige Idee?

Falls ja, was sind Beweggründe sich nochmal für eine partielle Integration zuentscheiden? Nicht das ich unnötig eine zu viel mache.

Mopsi

Bezug
                
Bezug
Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 20:45 Fr 17.05.2013
Autor: MathePower

Hallo Mopsi,

> 2. [mm]\int_{0}^{1}{x^2\cdot{}sinh(x)} dx[/mm]
>  
>
> Hier muss ich nun aber die partielle Integration bemühen,
> oder?
>  
> Hat diese Gleichung eigentlich einen Namen?
>  
> [mm]\int_{}^{} f(x) * g'(x) dx = \int_{}^{} f(x) * g(x) - \int_{}^{}f'(x)*g(x)dx[/mm]

>


Das muss doch hier so lauten:

[mm]\int_{}^{} f(x) * g'(x) dx = \blue{f(x) * g(x)} - \int_{}^{}f'(x)*g(x)dx[/mm]

  

> Ich setze nun einfach ein:
>  
> [mm]\int_{0}^{1}{x^2\cdot{}sinh(x)} dx = \int_{0}^{1} x^2 * cosh(x) - \int_{0}^{1}2x*cosh(x)dx[/mm]
>  
> So viel weiter hat dies mich nun nicht gebracht, oder?
>  
> Meine Idee wäre jetzt nochmal partielle Integrationen auf
> das rechte Integral anwenden.
>  
> Ist das die richtige Idee?
>  


Ja.


> Falls ja, was sind Beweggründe sich nochmal für eine
> partielle Integration zuentscheiden? Nicht das ich unnötig
> eine zu viel mache.

>


Um das Integral auf ein einfacher zu lösendes Integral zurückzuführen.  


> Mopsi


Gruss
MathePower

Bezug
                        
Bezug
Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:05 Fr 17.05.2013
Autor: Mopsi

Hey MathePower,


> > 2. [mm]\int_{0}^{1}{x^2\cdot{}sinh(x)} dx[/mm]

> Das muss doch hier so lauten:

>

> [mm]\int_{}^{} f(x) * g'(x) dx = \blue{f(x) * g(x)} - \int_{}^{}f'(x)*g(x)dx[/mm]

Ganz genau, sorry.

> > Falls ja, was sind Beweggründe sich nochmal für eine
> > partielle Integration zuentscheiden? Nicht das ich unnötig
> > eine zu viel mache.
> >

>
>

> Um das Integral auf ein einfacher zu lösendes Integral
> zurückzuführen.

Ich bin mir nicht sicher, ob es nun einfacher geworden ist.
​Also zumindest ist es nicht übersichtlicher geworden :P


[mm]\int_{0}^{1}{x^2\cdot{}sinh(x)} dx = x^2 * cosh(x) - \int_{0}^{1}2x*cosh(x)dx = x^2 * cosh(x) - 2x*sinh(x) - \int_{0}^{1} 2*sinh(x) dx[/mm]


[mm]= x^2 * cosh(x) - 2x*sinh(x) - 2*\int_{0}^{1}sinh(x) dx = x^2 * cosh(x) - 2x*sinh(x) - 2*(cosh(1) - 1)[/mm]

Ist das richtig und reicht das? Oder kann hier noch zusammengefasst werden?

Mopsi

Bezug
                                
Bezug
Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 21:15 Fr 17.05.2013
Autor: MathePower

Hallo Mopsi,


> Hey MathePower,
>  
>
> > > 2. [mm]\int_{0}^{1}{x^2\cdot{}sinh(x)} dx[/mm]
>  
> > Das muss doch hier so lauten:
>  >
>  > [mm]\int_{}^{} f(x) * g'(x) dx = \blue{f(x) * g(x)} - \int_{}^{}f'(x)*g(x)dx[/mm]

>  
> Ganz genau, sorry.
>  
> > > Falls ja, was sind Beweggründe sich nochmal für eine
>  > > partielle Integration zuentscheiden? Nicht das ich

> unnötig
>  > > eine zu viel mache.

>  > >

>  >
>  >
>  > Um das Integral auf ein einfacher zu lösendes Integral

>  > zurückzuführen.

>  
> Ich bin mir nicht sicher, ob es nun einfacher geworden
> ist.
>  ​Also zumindest ist es nicht übersichtlicher geworden
> :P
>  
>
> [mm]\int_{0}^{1}{x^2\cdot{}sinh(x)} dx = x^2 * cosh(x) - \int_{0}^{1}2x*cosh(x)dx = x^2 * cosh(x) - 2x*sinh(x) - \int_{0}^{1} 2*sinh(x) dx[/mm]
>


Hier müssen noch Klammern gesetzt werden:

[mm]\int_{0}^{1}{x^2\cdot{}sinh(x)} dx = x^2 * cosh(x) - \int_{0}^{1}2x*cosh(x)dx = x^2 * cosh(x) - \left\blue{(} \ 2x*sinh(x) - \int_{0}^{1} 2*sinh(x) dx \ \right\blue{)}[/mm]

Korrekt lautet das dann so:

[mm]\int_{0}^{1}{x^2\cdot{}sinh(x)} dx = \left x^2 * cosh(x)\right|_{x=0}^{x=1} - \int_{0}^{1}2x*cosh(x)dx = \left x^2 * cosh(x) \right|_{x=0}^{x=1}- \left\blue{(} \ \left 2x*sinh(x) \right|_{x=0}^{x=1} - \int_{0}^{1} 2*sinh(x) dx \ \right\blue{)}[/mm]



>
> [mm]= x^2 * cosh(x) - 2x*sinh(x) - 2*\int_{0}^{1}sinh(x) dx = x^2 * cosh(x) - 2x*sinh(x) - 2*(cosh(1) - 1)[/mm]
>  
> Ist das richtig und reicht das? Oder kann hier noch
> zusammengefasst werden?
>  
> Mopsi


Gruss
MathePower

Bezug
                                        
Bezug
Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:22 Fr 17.05.2013
Autor: Mopsi


> Hier müssen noch Klammern gesetzt werden:

>

> [mm]\int_{0}^{1}{x^2\cdot{}sinh(x)} dx = x^2 * cosh(x) - \int_{0}^{1}2x*cosh(x)dx = x^2 * cosh(x) - \left\blue{(} \ 2x*sinh(x) - \int_{0}^{1} 2*sinh(x) dx \ \right\blue{)}[/mm]

>

[mm]= x^2 * cosh(x) - ( 2x*sinh(x) - \int_{0}^{1} 2*sinh(x) dx ) = x^2*cosh(x)-2x*sinh(x)+2(cosh(1)-1) [/mm]

[mm]= x^2*cosh(x)-2x*sinh(x)+2cosh(1)-2[/mm]

Wie sieht's jetzt aus?

​Mopsi

Bezug
                                                
Bezug
Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 21:31 Fr 17.05.2013
Autor: MathePower

Hallo Mopsi,

>
> > Hier müssen noch Klammern gesetzt werden:
>  >
>  > [mm]\int_{0}^{1}{x^2\cdot{}sinh(x)} dx = x^2 * cosh(x) - \int_{0}^{1}2x*cosh(x)dx = x^2 * cosh(x) - \left\blue{(} \ 2x*sinh(x) - \int_{0}^{1} 2*sinh(x) dx \ \right\blue{)}[/mm]

>  
> >
>  
> [mm]= x^2 * cosh(x) - ( 2x*sinh(x) - \int_{0}^{1} 2*sinh(x) dx ) = x^2*cosh(x)-2x*sinh(x)+2(cosh(1)-1)[/mm]
>  
> [mm]= x^2*cosh(x)-2x*sinh(x)+2cosh(1)-2[/mm]
>  


Die Grenzen musst Du schon noch einsetzen:

[mm]= \left \left( \ x^2*cosh(x)-2x*sinh(x) \ \right) \right|_{x=0}^{x=1}+2cosh(1)-2[/mm]


> Wie sieht's jetzt aus?
>  
> ​Mopsi


Gruss
MathePower

Bezug
                                                        
Bezug
Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:40 Fr 17.05.2013
Autor: Mopsi


> Hallo Mopsi,

>

> >
> > > Hier müssen noch Klammern gesetzt werden:
> > >
> > >

>

> >
> > >
> >
> > [mm]= x^2 * cosh(x) - ( 2x*sinh(x) - \int_{0}^{1} 2*sinh(x) dx ) = x^2*cosh(x)-2x*sinh(x)+2(cosh(1)-1)[/mm]

>

> >
> > [mm]= x^2*cosh(x)-2x*sinh(x)+2cosh(1)-2[/mm]
> >

>
>

> Die Grenzen musst Du schon noch einsetzen:

>

> [mm]= \left \left( \ x^2*cosh(x)-2x*sinh(x) \ \right) \right|_{x=0}^{x=1}+2cosh(1)-2[/mm]

>

Aber wieso muss ich nun noch die Grenzen für den Term in den Klammern einsetzen?
Das Integralzeichen stand doch nur vor dem [mm]2*sinh(x)[/mm] und sonst nirgendwo, also du hast doch selber geschrieben:

> > > Hier müssen noch Klammern gesetzt werden:
> > >
> > >  [mm]\int_{0}^{1}{x^2\cdot{}sinh(x)} dx = x^2 * cosh(x) - \int_{0}^{1}2x*cosh(x)dx = x^2 * cosh(x) - \left\blue{(} \ 2x*sinh(x) - \int_{0}^{1} 2*sinh(x) dx \ \right\blue{)}[/mm]

​Wo kommen die Grenzen auf einmal her?

Mopsi

Bezug
                                                                
Bezug
Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 21:49 Fr 17.05.2013
Autor: MathePower

Hallo Mopsi,

> > Hallo Mopsi,
>  >
>  > >

>  > > > Hier müssen noch Klammern gesetzt werden:

>  > > >

>  > > >

>  >
>  > >

>  > > >

>  > >

>  > > [mm]= x^2 * cosh(x) - ( 2x*sinh(x) - \int_{0}^{1} 2*sinh(x) dx ) = x^2*cosh(x)-2x*sinh(x)+2(cosh(1)-1)[/mm]

>  
> >
>  > >

>  > > [mm]= x^2*cosh(x)-2x*sinh(x)+2cosh(1)-2[/mm]

>  > >

>  >
>  >
>  > Die Grenzen musst Du schon noch einsetzen:

>  >
>  > [mm]= \left \left( \ x^2*cosh(x)-2x*sinh(x) \ \right) \right|_{x=0}^{x=1}+2cosh(1)-2[/mm]

>  
> >
>  
> Aber wieso muss ich nun noch die Grenzen für den Term in
> den Klammern einsetzen?
>  Das Integralzeichen stand doch nur vor dem [mm]2*sinh(x)[/mm] und
> sonst nirgendwo, also du hast doch selber geschrieben:
>  
> > > > Hier müssen noch Klammern gesetzt werden:
>  > > >

>  > > >  [mm]\int_{0}^{1}{x^2\cdot{}sinh(x)} dx = x^2 * cosh(x) - \int_{0}^{1}2x*cosh(x)dx = x^2 * cosh(x) - \left\blue{(} \ 2x*sinh(x) - \int_{0}^{1} 2*sinh(x) dx \ \right\blue{)}[/mm]

>  
> ​Wo kommen die Grenzen auf einmal her?

>


Die Grenzen sind bei der Berechnung miitgeschleift worden.
Leider sind diese Grenzen bei Deiner Berechnung abhanden gekommen.


> Mopsi


Gruss
MathePower

Bezug
                                                                        
Bezug
Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:46 Sa 18.05.2013
Autor: Mopsi


> > ​Wo kommen die Grenzen auf einmal her?
> >

>
>

> Die Grenzen sind bei der Berechnung miitgeschleift worden.
> Leider sind diese Grenzen bei Deiner Berechnung abhanden
> gekommen.


[mm] \int_{0}^{1}{x^2\cdot{}sinh(x)} dx = \left x^2 \cdot{} cosh(x)\right|_{x=0}^{x=1} - \int_{0}^{1}2x\cdot{}cosh(x)dx = \left x^2 \cdot{} cosh(x) \right|_{x=0}^{x=1}- (\left 2x\cdot{}sinh(x) \right|_{x=0}^{x=1} - \int_{0}^{1} 2\cdot{}sinh(x) dx)[/mm]


Dieser senkrechte Strich, ist das eine korrekte Notation? 
Oder soll ich lieber die eckigen Klammern nehmen?
Denn bei den eckigen Klammern, wird der Term, in den man die Grenzen einsetzen muss eingeschlossen und sichtbar. Hier ist es auch noch eindeutig, aber was ist, wenn da sowas steht:

[mm] \left 2x + x^2 \cdot{} cosh(x)\right|_{x=0}^{x=1}[/mm]

Setzt man hier dann auch die Grenzen für 2x ein?


Nun wieder zur Lösung der Aufgabe:

[mm] \int_{0}^{1}{x^2\cdot{}sinh(x)} dx = \left x^2 \cdot{} cosh(x)\right|_{x=0}^{x=1} - \int_{0}^{1}2x\cdot{}cosh(x)dx = \left x^2 \cdot{} cosh(x) \right|_{x=0}^{x=1}- (\left 2x\cdot{}sinh(x) \right|_{x=0}^{x=1} - \int_{0}^{1} 2\cdot{}sinh(x) dx)[/mm]

[mm]= cosh(1) - 2sinh(1) + 2*cosh(1) - 2 = 3cosh(1) - 2sinh(1) - 2[/mm]

​Mopsi

Bezug
                                                                                
Bezug
Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 09:58 Sa 18.05.2013
Autor: fred97


> > > ​Wo kommen die Grenzen auf einmal her?
>  > >

>  >
>  >
>  > Die Grenzen sind bei der Berechnung miitgeschleift

> worden.
>  > Leider sind diese Grenzen bei Deiner Berechnung

> abhanden
>  > gekommen.

>  
>
> [mm]\int_{0}^{1}{x^2\cdot{}sinh(x)} dx = \left x^2 \cdot{} cosh(x)\right|_{x=0}^{x=1} - \int_{0}^{1}2x\cdot{}cosh(x)dx = \left x^2 \cdot{} cosh(x) \right|_{x=0}^{x=1}- (\left 2x\cdot{}sinh(x) \right|_{x=0}^{x=1} - \int_{0}^{1} 2\cdot{}sinh(x) dx)[/mm]
>  
>
> Dieser senkrechte Strich, ist das eine korrekte
> Notation? 
>  Oder soll ich lieber die eckigen Klammern nehmen?
>  Denn bei den eckigen Klammern, wird der Term, in den man
> die Grenzen einsetzen muss eingeschlossen und sichtbar.
> Hier ist es auch noch eindeutig, aber was ist, wenn da
> sowas steht:
>  
> [mm]\left 2x + x^2 \cdot{} cosh(x)\right|_{x=0}^{x=1}[/mm]
>  
> Setzt man hier dann auch die Grenzen für 2x ein?

Hier würde ich eckige Klammern nehmen.


>  
>
> Nun wieder zur Lösung der Aufgabe:
>  
> [mm]\int_{0}^{1}{x^2\cdot{}sinh(x)} dx = \left x^2 \cdot{} cosh(x)\right|_{x=0}^{x=1} - \int_{0}^{1}2x\cdot{}cosh(x)dx = \left x^2 \cdot{} cosh(x) \right|_{x=0}^{x=1}- (\left 2x\cdot{}sinh(x) \right|_{x=0}^{x=1} - \int_{0}^{1} 2\cdot{}sinh(x) dx)[/mm]
>  
> [mm]= cosh(1) - 2sinh(1) + 2*cosh(1) - 2 = 3cosh(1) - 2sinh(1) - 2[/mm]

Wo ist [mm] \int_{0}^{1} 2\cdot{}sinh(x) [/mm] dx geblieben ?????

FRED

>  
> ​Mopsi


Bezug
                                                                                        
Bezug
Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:18 Sa 18.05.2013
Autor: Mopsi

Das ist dieser Teil: [mm]2*cosh(1) - 2[/mm]

 

Bezug
                                                                                                
Bezug
Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 10:23 Sa 18.05.2013
Autor: fred97


> Das ist dieser Teil: [mm]2*cosh(1) - 2[/mm]

Pardon, da hab ich nicht richtig hingesehen.

3cosh(1) - 2sinh(1) - 2  kannst Du noch vereinfachen.

FRED

>  
>  


Bezug
                                                                                                        
Bezug
Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:30 Sa 18.05.2013
Autor: Mopsi


> > Das ist dieser Teil: [mm]2*cosh(1) - 2[/mm]

>

> Pardon, da hab ich nicht richtig hingesehen.

Kein Problem. :)

> 3cosh(1) - 2sinh(1) - 2 kannst Du noch vereinfachen.

Mir fällt jetzt nur das ein:

3cosh(1) - 2(sinh(1) - 1)

Ich weiß leider gar nicht, wie cosh und sinh zusammenhängen..

Kannst du mir da bitte weiterhelfen?

Mopsi

Bezug
                                                                                                                
Bezug
Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 11:04 Sa 18.05.2013
Autor: fred97


> > > Das ist dieser Teil: [mm]2*cosh(1) - 2[/mm]
>  >
>  > Pardon, da hab ich nicht richtig hingesehen.

>  
> Kein Problem. :)
>  
> > 3cosh(1) - 2sinh(1) - 2 kannst Du noch vereinfachen.
>  
> Mir fällt jetzt nur das ein:
>  
> 3cosh(1) - 2(sinh(1) - 1)
>  
> Ich weiß leider gar nicht, wie cosh und sinh
> zusammenhängen..
>  
> Kannst du mir da bitte weiterhelfen?

    

   $ [mm] \sinh( [/mm] x) = [mm] \frac{1}{2} \left( e^x - e^{-x} \right) [/mm] $

        

   $ [mm] \cosh [/mm] (x) = [mm] \frac{1}{2} \left( e^x + e^{-x} \right) [/mm] $

FRED

>  
> Mopsi


Bezug
                                                                                                                        
Bezug
Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:30 Sa 18.05.2013
Autor: Mopsi


> > Ich weiß leider gar nicht, wie cosh und sinh
> > zusammenhängen..
> >
> > Kannst du mir da bitte weiterhelfen?

>
>
>

> [mm]\sinh( x) = \frac{1}{2} \left( e^x - e^{-x} \right)[/mm]

>
>
>

> [mm]\cosh (x) = \frac{1}{2} \left( e^x + e^{-x} \right)[/mm]

[mm]3cosh(1) - 2sinh(1) - 2 = \frac{3}{2}(e+ \frac{1}{e})-(e- \frac{1}{e}) -2 = \frac{3}{2}e + \frac{3}{2e} - e + \frac{1}{e} -2 = \frac{1}{2}e + \frac{5}{2e} - 2 [/mm]

​Mopsi

Bezug
                                                                                                                                
Bezug
Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 11:42 Sa 18.05.2013
Autor: M.Rex


> > > Ich weiß leider gar nicht, wie cosh und sinh
> > > zusammenhängen..
> > >
> > > Kannst du mir da bitte weiterhelfen?
> >
> >
> >
> > [mm]\sinh( x) = \frac{1}{2} \left( e^x - e^{-x} \right)[/mm]
> >
> >
> >
> > [mm]\cosh (x) = \frac{1}{2} \left( e^x + e^{-x} \right)[/mm]

>

> [mm]3cosh(1) - 2sinh(1) - 2 = \frac{3}{2}(e+ \frac{1}{e})-(e- \frac{1}{e}) -2 = \frac{3}{2}e + \frac{3}{2e} - e + \frac{1}{e} -2 = \frac{1}{2}e + \frac{5}{2e} - 2 [/mm]

>

> ​Mopsi

Das sieht gut aus.

Ein kleiner LaTeX-Tipp noch:
Mit \left( bzw \right) kannst du die Klammergröße an den Inhalt anpassen.

\left(e+\frac{1}{3}\right) ergit dann eben [mm] \left(e+\frac{1}{3}\right) [/mm]

Marius

Bezug
                                                                                                                                        
Bezug
Integrale: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:47 Sa 18.05.2013
Autor: Mopsi


> Das sieht gut aus.

Dankeschön, an dich, MathePower und Fred :)

> Ein kleiner LaTeX-Tipp noch:
> Mit [mm][code]\left([/code] bzw [code]\right)[/code][/mm] kannst du
> die Klammergröße an den Inhalt anpassen.

>

> [mm][code]\left(e+\frac{1}{3}\right)[/code][/mm] ergit dann eben
> [mm]\left(e+\frac{1}{3}\right)[/mm]

Alles klar, vielen Dank für den Tipp! :)

Mopsi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de