www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integrale Substitutionsregel
Integrale Substitutionsregel < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrale Substitutionsregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:54 Do 07.02.2008
Autor: NangNang

Aufgabe
[mm] \integral_{}^{}{f(x)\bruch{1}{x} \bruch{1}{\wurzel{1+2lnx}} dx} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo Zusammen!

Da dies mein erster Eintrag in diesem Forum ist bitte ich um Nachsicht.

Dennoch wäre es toll wenn ihr mir weiterhelfen könntet!

Die Aufgabe ist dieses unbestimmte Integral zu bestimmen.

Meiner Meinung nach ist hier die Substitution vorteilhaft. Komme nur an bei der Aufleitung nicht weiter.

[mm] \integral_{}^{}{f(x)\bruch{1}{x} \bruch{1}{\wurzel{1+2lnx}} dx} [/mm]

habe Y(substitut)=lnx

[mm] f'(x)=\bruch{dy}{dx}=\bruch{1}{x} [/mm]

-> dx= [mm] x\*dy [/mm]


Wenn ich dies einsetze kommt dann dies heraus:

[mm] \integral_{}^{}{f(x) \bruch{1}{x} \bruch{1}{\wurzel{1+2y}}dy} [/mm]

wobei sich das x wegkürzt und folgender Ausdruck herauskommt:

[mm] \integral_{}^{}{f(x) \bruch{1}{\wurzel{1+2y}}dy} [/mm]

Dies kann man dann vereinfachen:

[mm] \integral_{}^{}{f(x) (1+2y)^\bruch{-1}{2}} [/mm]

(in worten : minus hoch 1/2 , damit es nicht zu verwirrungen kommt)

hier komm ich nicht weiter, weil jetzt müsste man es aufleiten, richtig?

Und das krieg ich leider nicht hin, kann mir da einer helfen?

Vielen Dank schon mal.

Grüße..

        
Bezug
Integrale Substitutionsregel: andere Substitution
Status: (Antwort) fertig Status 
Datum: 17:04 Do 07.02.2008
Autor: Roadrunner

Hallo NangNang,

[willkommenmr] !!


Auch Dein weg führt zum Ziel. Einfacher wird es jedoch, wenn Du $z \ := \ [mm] 1+\ln(x)$ [/mm] substituierst.


Gruß vom
Roadrunner


Bezug
                
Bezug
Integrale Substitutionsregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:02 Do 07.02.2008
Autor: NangNang

Ja das mag natürlich richtig sein, aber dennoch hilft mir das bei dem Aufleiten des letzten Terms nicht.

Das ist ja mein Problem sozusagen.


Grüße, NangNang

Bezug
                        
Bezug
Integrale Substitutionsregel: noch eine Substitution
Status: (Antwort) fertig Status 
Datum: 18:05 Do 07.02.2008
Autor: Roadrunner

Hallo NangNang!


Du kannst ja hier nochmals substituieren mit $t \ := \ 1+2*y$ und anschließend mittels MBPotenzregel integrieren.


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de