www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Matlab" - Integrale berechnen
Integrale berechnen < Matlab < Mathe-Software < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Matlab"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrale berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:27 Fr 04.05.2012
Autor: DerGraf

Aufgabe
Schreibe ein Matlabprogramm zu:

[mm] \sum_{k=1}^5\int_{k}^{k+1}\int_{0}^{k}\exp(6-k)*\exp(k-y)*0.12*(x-y)^{-4/5}dydx [/mm] .

Hallo,

ich habe folgendes Programm geschrieben und eine Fehlermeldung erhalten.

sum=0;
for k=1:5
    syms x y;
    f=int(int(exp(6-k)*exp(k-y)*0.12*(x-y)^(-4/5),y,0,k),x,k,k+1);
    sum=sum+f;
end

sum
Warning: Explicit integral could not be found.

> In sym.int at 58

  In test at 4

Warning from ==> sym.int at 58
         warning('symbolic:sym:int:warnmsg1','Explicit integral could not be found.')

x und y sind durch syms deklariert, auf k stehen natürliche Zahlen und der Fehler bleibt auch dann der Gleiche, wenn ich k in syms mit aufnehme.
Was soll ich tun?

Gruß
DerGraf

        
Bezug
Integrale berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:09 So 06.05.2012
Autor: Denny22


> Schreibe ein Matlabprogramm zu:
>  
> [mm]\sum_{k=1}^5\int_{k}^{k+1}\int_{0}^{k}\exp(6-k)*\exp(k-y)*0.12*(x-y)^{-4/5}dydx[/mm]
> .

Hallo,

ich kenne mich zwar nicht so gut mit der Symbolic Toolbox von Matlab aus, aber das Integral kannst Du doch fast analytisch berechnen. Im Integranden sind die $k$'s doch überflüssig. Außerdem kannst Du das $y$ Integral transformieren mit [mm] $\phi(y)=y-6=:z$. [/mm] Anschließend vertauschst Du am besten die Integrale (Satz von Fubini), verwendest die Transformation [mm] $\phi(x)=x-6-z=:u$ [/mm] und berechnest zuerst das $x$ Integral und erst dann das $y$ bzw. jetzt das $z$-Integral:

[mm] $\sum_{k=1}^5\int_{k}^{k+1}\int_{0}^{k}\exp(6-k)*\exp(k-y)*0.12*(x-y)^{-4/5}dydx$ [/mm]
[mm] $=0.12\sum_{k=1}^5\int_{k}^{k+1}\int_{0}^{k}\exp(6-y)*(x-y)^{-4/5}dydx$ [/mm]
[mm] $=0.12\sum_{k=1}^5\int_{k}^{k+1}\int_{-6}^{k-6}\exp(-z)*(x-6-z)^{-4/5}dzdx$ [/mm]
[mm] $=0.12\sum_{k=1}^5\int_{-6}^{k-6}\exp(-z)\int_{k}^{k+1}(x-6-z)^{-4/5}dxdz$ [/mm]
[mm] $=0.12\sum_{k=1}^5\int_{-6}^{k-6}\exp(-z)\int_{k-6-z}^{k-5-z}u^{-4/5}dudz$ [/mm]
[mm] $=0.12\sum_{k=1}^5\int_{-6}^{k-6}\exp(-z)\left[5u^{1/5}\right]_{u=k-6-z}^{k-5-z}dz$ [/mm]
[mm] $=0.6\sum_{k=1}^5\int_{-6}^{k-6}\exp(-z)\left[(k-5-z)^{1/5}-(k-6-z)^{1/5}\right]dz$ [/mm]
[mm] $=0.6\sum_{k=1}^5\left[\int_{-6}^{k-6}\exp(-z)(k-5-z)^{1/5}dz-\int_{-6}^{k-6}\exp(-z)(k-6-z)^{1/5}dz\right]$ [/mm]
[mm] $=0.6\sum_{k=1}^5\left[-\int_{k+1}^{1}\exp(w+5-k)w^{1/5}dw+\int_{k}^{0}\exp(w+6-k)w^{1/5}dw\right]$ [/mm]
[mm] $=0.6\sum_{k=1}^5\left[\int_{1}^{k+1}\exp(w+5-k)w^{1/5}dw-\int_{0}^{k}\exp(w+6-k)w^{1/5}dw\right]$ [/mm]
[mm] $=0.6\sum_{k=1}^5\left[\exp(5-k)\int_{1}^{k+1}\exp(w)w^{1/5}dw-\exp(6-k)\int_{0}^{k}\exp(w)w^{1/5}dw\right]$ [/mm]

Nun wird es doch tricky: Hier gilt etwas wie

[mm] $\int\exp(w)w^{1/5}dw=\frac{1}{5}\sqrt[5]{w}\left(5 e^w+\frac{\Gamma(\frac{1}{5},-w)}{\sqrt[5]{-w}}\right)$ [/mm]

wobei [mm] $\Gamma$ [/mm] hier die unvollständige Gammafunktion bezeichnet.

Gruß
Denny

Bezug
        
Bezug
Integrale berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:16 So 06.05.2012
Autor: Denny22

Zu Deiner Fehlermeldung siehe mal []hier. Dort verwenden sie etwas wie

  [mm] $\mathrm{double}(\mathrm{int}(f,0,2))$ [/mm]

für das Beispiel [mm] $f(x)=(x^2-\sin(x^4))^{1/2}$. [/mm] Mit dem double Befehl erlaubst Du Matlab numerische Integrationsverfahren zu verwenden. Dies ist ratsam, wenn Matlab keine geschlossene Darstellung für die Stammfunktion kennt. Ob es bei Dir damit klappt musst Du testen.

Gruß
Denny

Bezug
                
Bezug
Integrale berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:17 Fr 18.05.2012
Autor: DerGraf

Vielen Dank für deine Tipps! das Programm läuft.

Gruß
DerGraf

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Matlab"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de