www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integralfunktion
Integralfunktion < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralfunktion: vorgehensweise
Status: (Frage) beantwortet Status 
Datum: 19:48 Do 02.11.2006
Autor: Karlchen

Aufgabe
Berechnen Sie mithilfe der Integralfunktion J mit J(x)= [mm] \integral_{0}^{x}{t^{2} dt}=\bruch{1}{3}x^{3} [/mm] das Integral [mm] \integral_{2}^{4}{x^{2} dx} [/mm]

Nabend zusammen!

So wir haben von unserem Lehrer die obige AUfgabe aufbekommen. Mein Problem ist, dass ich absolut ga rnicht weiß wie ich jetzt vorgehen muss. Also wär ganz nett wenn mir da mal jemand helfen könnte, brauch auch nur den Ansatz und eine kurze Erklärung, wäre auch nciht schlecht, den rest werde ich dann allein versuchen.

danke schon mal im voraus

euer Karlchen

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Integralfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:51 Do 02.11.2006
Autor: Dolph667

Gegeben ist deine Funktion: f(x)=X²
Unter- und Obergrenze des Integrals sind auch gegeben: 2 und 4
Selbst die Stammfunktion [mm] F(X)=\bruch{1}{3}x^{3} [/mm] ist bekannt.
Alles was du machen musst ist:

[mm] \integral_{2}^{4}{f(x) dx}=F(4)-F(2) [/mm]

Ich hoffe damit ist dir geholfen.

Gruß vom Dolph

Bezug
                
Bezug
Integralfunktion: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 23:15 Do 02.11.2006
Autor: Karlchen

Ja okay danke ers ma...also hat mir insofern geholfen, dass ich jez ein ergebnis habe, nur weiß ich nicht wie man dazu kommt.

also was mir bis jez noch unschlüssig ist, ich habe ja das Integral [mm] \integral_{0}^{x}{t^{2}tx} [/mm] und meine Frgae ist jez, in wie fern muss ich die mir gegebenen Grenzen 0 und x beachten? Okay x könnt ich mir noch so erklären, dass ich einfach 4 einsetze, aber was ist mit 0?

wär echt öieb wenn mir da jemand helfen könnte und sorry, wenn ich mich zu dumm anstelle, nur raffs einfach ned...

Bezug
                        
Bezug
Integralfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 23:44 Do 02.11.2006
Autor: Sigrid

Hallo Karlchen,

> Ja okay danke ers ma...also hat mir insofern geholfen, dass
> ich jez ein ergebnis habe, nur weiß ich nicht wie man dazu
> kommt.
>  
> also was mir bis jez noch unschlüssig ist, ich habe ja das
> Integral [mm]\integral_{0}^{x}{t^{2}tx}[/mm] und meine Frgae ist
> jez, in wie fern muss ich die mir gegebenen Grenzen 0 und x
> beachten? Okay x könnt ich mir noch so erklären, dass ich
> einfach 4 einsetze, aber was ist mit 0?

Hier noch mal deine Aufgabe:

Aufgabe
Berechnen Sie mithilfe der Integralfunktion J mit J(x)= $ [mm] \integral_{0}^{x}{t^{2} dt}=\bruch{1}{3}x^{3} [/mm] $ das Integral $ [mm] \integral_{2}^{4}{x^{2} dx} [/mm] $

Du hast ja schon gesehen, dass $ J(4) = [mm] \bruch{1}{3}4^{3} [/mm] $ und entsprechend ist $ J(2) = [mm] \bruch{1}{3}2^{3} [/mm] $.

Die Differenz ist jetzt dein gesuchtes Integral. Das heißt du subtrahierst vom Integral von 0 bis 4 das Integral von 0 bis 2 und erhälst das Integral von 2 bis 4.

Trifft das deine Frage?

Gruß
Sigrid

>  
> wär echt öieb wenn mir da jemand helfen könnte und sorry,
> wenn ich mich zu dumm anstelle, nur raffs einfach ned...

Bezug
                                
Bezug
Integralfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:00 Fr 03.11.2006
Autor: Karlchen

ich bin mir da noch nciht sooo sicher, aber ich denke, ich habe jez doch eine vorstellung wie das zusammen hängt! danke also für die Hilfe und nen schön abend wünsch ich noch^^

Bezug
                        
Bezug
Integralfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:45 Fr 03.11.2006
Autor: Dolph667

Hallöchen nochmal!

Das ganze heißt, mit einer Stammfunktion kannst du erstmal nur das Integral von 0 bis einem beliebigen n bestimmen.
Wenn du jetzt ein Integral von 2 bis 4 bestimmen willst geht das nur mit einem kleinen Trick.
Du bestimmst erst das Integral von 0 bis 4 und ziehst dann das Integral von 0 bis 2 davon ab.

Ich hoffe das war die Hilfe die du suchtest,
lg dolph

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de