www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Integralfunktion Ableitung
Integralfunktion Ableitung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralfunktion Ableitung: Term und Ableitung
Status: (Frage) beantwortet Status 
Datum: 12:44 Di 10.04.2012
Autor: GrueneFee

Aufgabe
Gegeben sei die Integralfunktion Fa(x) = [mm] \integral_{a}^{x}(2t^2+4t)dt. [/mm]

a) Geben Sie den Term der Funktion Fa(x) explizit an.
b) Zeigen Sie, dass die Ableitung von Fa(x) gleich dem Term der Integrandenfunktion ist.
c) Nun sei a = 0. Für welchen Wert x gilt F0(x)= [mm] \bruch{4}{3}? [/mm]

Tag zusammen.

Also ich habe wiefolgt angefangen:

[mm] \integral_{a}^{x}2t^2dt [/mm] + [mm] \integral_{a}^{x}4tdt [/mm] = [mm] 2\integral_{a}^{x}t^2dt [/mm] + [mm] 4\integral_{a}^{x}tdt. [/mm]

2 [mm] \bruch{t^3}{3} [/mm] - [mm] \bruch{a^3}{3} [/mm] + 4 [mm] \bruch{t^2}{2} [/mm] - [mm] \bruch{a^2}{2} [/mm]

= 2 [mm] \bruch{x^3-a^3}{3} [/mm] + [mm] 2(x^2-a^2) [/mm] = F(x).

Hoffe ihr versteht was ich da getan habe? Wie bekomme ich jetzt die Ableitung von F(x)?

Bitte um Hilfe!!!
Danke!

Gruß´,
Die Gruene_Fee

        
Bezug
Integralfunktion Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:30 Di 10.04.2012
Autor: Event_Horizon

Hallo!

Ja, das ist völlig korrekt so.

Nun mußt du die letzte Zeile x ableiten (und a wie eine konstante Zahl betrachten).

Das ist vermutlich so banal, daß du es für zu einfach hälst, oder? Dabei kommt einfach 2x²+4x raus, was dem Integranden vom Anfang entspricht.


Bezug
                
Bezug
Integralfunktion Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:19 Sa 14.04.2012
Autor: GrueneFee

Super, vielen Dank!

Es lag tatsächlich auf der Hand und ich habe es nur nicht gesehen. Aber bei Aufgabe c) komme ich einfach nicht weiter. Bzw. ich finde keinen Ansatz... könntest du mir da vielleicht auf den Weg helfen?

Danke!

Bezug
                        
Bezug
Integralfunktion Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:42 Sa 14.04.2012
Autor: Diophant

Hallo,

es ist die Gleichung

[mm]\integral_{0}^{x}{(2t^2+4t) dx}=\bruch{4}{3}[/mm]

nach x aufzulösen. Wenn du die beiden anderen Teilaufgaben geschafft hast, sollte dies ebenfalls kein größeres Problem sein. Zunächst wertet man das Integral auf der linken Seite aus. Die entstehende kubische Gleichung besitzt eine einfache ganzzahlige Lösung, die man per Polynomdivision abspalten kann, um dann die beiden anderen Lösungen leicht mittels pq-Formel zu bestimmen.


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de