www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integralkonvergenz
Integralkonvergenz < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralkonvergenz: Übung
Status: (Frage) beantwortet Status 
Datum: 17:19 Mo 27.01.2014
Autor: capri

Aufgabe
Untersuchen Sie die Integrale auf Konvergenz.

[mm] \integral_{0}^{2} \bruch{1}{\wurzel{x^2-4x+4}} [/mm] dx

(ps: soll dritte wurzel von heißen, habe es nicht auf die Reihe bekommen)

Hallo,

aus [mm] x^2-4x+4 [/mm] wird [mm] (x-2)^2 [/mm] und ich erhalte:

[mm] \integral_{0}^{2} \bruch{1}{\wurzel{(x-2)^2}} [/mm] dx

nun komme ich schon nicht weiter kann ich das irgendwie umformen?

LG

        
Bezug
Integralkonvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 17:24 Mo 27.01.2014
Autor: DieAcht

Hallo,


> Untersuchen Sie die Integrale auf Konvergenz.
>  
> [mm]\integral_{0}^{2} \bruch{1}{\wurzel{x^2-4x+4}}[/mm] dx
>  
> (ps: soll dritte wurzel von heißen, habe es nicht auf die
> Reihe bekommen)
>  Hallo,
>  
> aus [mm]x^2-4x+4[/mm] wird [mm](x-2)^2[/mm] und ich erhalte:
>  
> [mm]\integral_{0}^{2} \bruch{1}{\wurzel{(x-2)^2}}[/mm] dx
>  
> nun komme ich schon nicht weiter kann ich das irgendwie
> umformen?

Es gilt:

      [mm] \sqrt[n]{a}=a^{\frac{1}{n}} [/mm]

      [mm] \frac{1}{x}=x^{-1} [/mm]


Gruß
DieAcht

Bezug
        
Bezug
Integralkonvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 18:33 Mo 27.01.2014
Autor: Diophant

Hallo,

> Untersuchen Sie die Integrale auf Konvergenz.

>

> [mm]\integral_{0}^{2} \bruch{1}{\wurzel{x^2-4x+4}}[/mm] dx

>

> (ps: soll dritte wurzel von heißen, habe es nicht auf die
> Reihe bekommen)
> Hallo,

>

> aus [mm]x^2-4x+4[/mm] wird [mm](x-2)^2[/mm] und ich erhalte:

>

> [mm]\integral_{0}^{2} \bruch{1}{\wurzel{(x-2)^2}}[/mm] dx

>

> nun komme ich schon nicht weiter kann ich das irgendwie
> umformen?

Das kann man durch eine einfache Substitution berechnen, wenn man bedenkt, dass

[mm] \bruch{1}{\wurzel[3]{(x-2)^2}}=(x-2)^{-2/3} [/mm]

ist. Sprich; vermittlest der Intergationsregel für Potenzfunktionen kommt man hier zum Ziel, ohne das man irgendwelche Grenzwerte ermitteln muss.

Gruß, Diophant

Bezug
                
Bezug
Integralkonvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:04 Mo 27.01.2014
Autor: capri

Hallo,

ich habe nun:

[mm] (x-2)^{-\bruch{2}{3}} [/mm]  =

[mm] -3(x-2)^{-\bruch{1}{3}} [/mm]

könnte ich mit minus einmal mal nehmen sodass ich [mm] 3\wurzel{x-2} [/mm] (dritte Wurzel) habe? und dann einfach die Grenzen einsetzen, dann sehe ich, dass da eine reelle Zahl rauskommt und damit habe ich die Konvergenz gezeigt?

Bezug
                        
Bezug
Integralkonvergenz: mathematisches Verbrechen
Status: (Antwort) fertig Status 
Datum: 19:15 Mo 27.01.2014
Autor: Loddar

Hallo capri!


> ich habe nun:
>
> [mm](x-2)^{-\bruch{2}{3}}[/mm] =
>
> [mm]-3(x-2)^{-\bruch{1}{3}}[/mm]

Du scheinst im Ansatz das Richtige zu meinen. Aber der obere Term wird nur in den allerseltensten Fällen gleich dem unteren Term sein.

Es muss heißen:

[mm] $\integral{(x-2)^{-\bruch{2}{3}} \ dx} [/mm] \ = \ [mm] -3*(x-2)^{... \ \bruch{1}{3}}$ [/mm]

(Auf die Integrationskonstante verzichte ich hier mal.)

Jedenfalls solltest Du nochmals über das Vorzeichen im Exponenten der Stammfunktion nachdenken.


> könnte ich mit minus einmal mal nehmen sodass ich
> [mm]3\wurzel{x-2}[/mm] (dritte Wurzel) habe?

[eek] Nein, auf gar keinen Fall. [notok] [notok] [notok]
Das ist mathematisches Schwerverbrechen. Mir bluten gerade die Augen und andere wichtige Organe.


> und dann einfach die
> Grenzen einsetzen, dann sehe ich, dass da eine reelle Zahl
> rauskommt und damit habe ich die Konvergenz gezeigt?

Das kann man so schnell mal aussprechen.
Aber mathematisch korrekt solltest Du doch eine entsprechende Grenzwertbetrachtung durchführen.


Gruß
Loddar

Bezug
                                
Bezug
Integralkonvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:35 Mo 27.01.2014
Autor: capri

habe meine fehler gesehen dankee :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de