www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Integralkriterium für Konverge
Integralkriterium für Konverge < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralkriterium für Konverge: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:16 Mi 04.05.2005
Autor: Tinchen

Hallo Leute!
Hier habe ich noch ´ne schöne schwere Aufgabe, mit der ich nichts anfangen kann! Kann jemand helfen?
Untersuchen Sie die Reihe  [mm] \summe_{j=0}^{\infty} (-1)^j x^{2j} [/mm] im Intervall [-q,q] bei beliebigem, aber festem q  [mm] \in [/mm] (0,1) sqwie im Intervall (-1,1) auf gleichmäßige Konvergenz.
Unter Verwendung von oben genannten gebe man eine Potenzreihendarstellung für arctan(x) im Intervall (-1,1) an.

        
Bezug
Integralkriterium für Konverge: Formel falsch?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:17 Mi 04.05.2005
Autor: leduart

Hallo
kannst du dir noch mal dein Formel ansehen? sie sieht falsch aus!
Gruss leduart

Bezug
        
Bezug
Integralkriterium für Konverge: Korrigiert
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Mi 04.05.2005
Autor: Paulus

Hallo

ich habe die Formel doch korrigiert! Ist sie denn immer noch falsch?

So ist es mir jedenfalls gelungen, diese bis auf die Form [mm] $\bruch{1}{x^2+1}$ [/mm] zu vereinfachen (Geometrische Reihe), und dann scheint sie ja zu stimmen, weil der Arcustangens doch eine Stammfunktion davon ist?!

Mit lieben Grüssen

Paul

Bezug
                
Bezug
Integralkriterium für Konverge: Alles Korrekt
Status: (Antwort) fertig Status 
Datum: 21:45 Mi 04.05.2005
Autor: volta

Jo, das stimmt soweit (ich sitz' mit Tinchen in der selben Übung). Den Trick mit der geometrischen Reihe hab ich mir auch gedacht (Ist das nicht etwas zu leicht?!?).
Nun weiss man ja, daß [mm] $\integral_{0}^{x} {\bruch{dt}{1+t^{2}}} [/mm] = [mm] \arctan(x)$. [/mm]
Also muss das wegen der gleichmäßigen Konvergenz auch für die Reihe gelten:
[mm] $\integral_{0}^{x} {\summe_{j=0}^{\infty}(-t^{2})^{j} dt} [/mm] = [mm] \summe_{j=0}^{\infty}(-1)^{j}\integral_{0}^{x} {t^{2} dt} [/mm] = [mm] \summe_{j=0}^{\infty}(-1)^{j} \bruch{x^{2j+1}}{2j+1}$ [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de