www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Integralrechnung- 2 Funktionen
Integralrechnung- 2 Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung- 2 Funktionen: Frage
Status: (Frage) beantwortet Status 
Datum: 23:11 Di 01.02.2005
Autor: Disap

Hallo.

Es soll bei der Funktionsgleichung f(x) = [mm] x^3-6x+9x [/mm] und g(x)= -  [mm] \bruch{1}{2}x^2+2x [/mm] der Flächeninhalt im Intervall [0;4] errechnet werden.

1. Schritt
f(x) = g(x)

um auf die Schnittpunkte zu kommen.
dann ergibt sich eine neue Funktionsgleichung, die man zum integrieren benutzen kann:
h(x) = [mm] x^3 [/mm] -  [mm] \bruch{11}{2}x^2+7x [/mm]
und die Schnittpunkte
[mm] x_{1} [/mm] = 0
[mm] x_{2} [/mm] = 2
[mm] x_{3} [/mm] = 3,5

Bis hier hin noch definitiv richtig.

2. Schritt & Frage

Flächeninhalte ausrechnen (Hinweis: Mir ist bewusst, da fehlen die Betragsstriche)

[mm] A_{1}=\integral_{0}^{2} [/mm] h(x) dx= [ [mm] \bruch{x^4}{4}- \bruch{11x^3}{6}+ \bruch{7x^2}{2}]_{0}^{2} [/mm] =  [mm] \bruch{10}{3} [/mm]
[ok]
[mm] A_{2}=\integral_{2}^{3,5} [/mm] h(x) dx= [ [mm] \bruch{x^4}{4}- \bruch{11x^3}{6}+ \bruch{7x^2}{2}]_{2}^{3,5} \approx [/mm] 1,558
[ok]
[mm] A_{3}=\integral_{3,5}^{4} [/mm] h(x) dx= [ [mm] \bruch{x^4}{4}- \bruch{11x^3}{6}+ \bruch{7x^2}{2}]_{3,5}^{4} [/mm] =  0,88

1) Hier bin ich mir nicht sicher, muss ich nun in die Stammfunktion 3,5 einsetzen und das abziehen? So habe ich es hier gemacht.

Oder

2) Muss ich  [mm] \integral_{2}^{3,5} [/mm] h(x) dx + [mm] \integral_{0}^{2} [/mm] h(x) dx davon abziehen?


Also noch mal zur Verdeutlichung: Mein Problem besteht darin, dass mich die Nullstellen/Schnittpunkte irritieren.
Inwiefern berechne ich: [mm] \integral_{3,5}^{4} [/mm] h(x) dx
Was ist mit diesen 3,5 gemeint? Der Flächeninhalt der Funktion bis 3,5 oder einfach nur F(3,5)?

3. Schritt
Nur der Vollständigkeitshalber:

[mm] A_{1}+A_{2}+A_{3}=A_{gesamt} [/mm]


Liebe Grüße Disap

        
Bezug
Integralrechnung- 2 Funktionen: verbessert
Status: (Antwort) fertig Status 
Datum: 23:30 Di 01.02.2005
Autor: informix

Hallo Disap,
>  
> Es soll bei der Funktionsgleichung f(x) = [mm]x^3-6x\red{^2}+9x[/mm] und
> g(x)= -  [mm]\bruch{1}{2}x^2+2x[/mm] der Flächeninhalt im Intervall
> [0;4] errechnet werden.
>  
> 1. Schritt
>  f(x) = g(x)
>  
> um auf die Schnittpunkte zu kommen.
>  dann ergibt sich eine neue Funktionsgleichung, die man zum
> integrieren benutzen kann:
>  h(x) = [mm]x^3[/mm] -  [mm]\bruch{11}{2}x^2+7x[/mm]
>  und die Schnittpunkte
>   [mm]x_{1}[/mm] = 0
>   [mm]x_{2}[/mm] = 2
>   [mm]x_{3}[/mm] = 3,5
>  
> Bis hier hin noch definitiv richtig. [ok]
>  
> 2. Schritt & Frage
>  
> Flächeninhalte ausrechnen (Hinweis: Mir ist bewusst, da
> fehlen die Betragsstriche)
>  
> [mm]A_{1}=\integral_{0}^{2}[/mm] h(x) dx= [ [mm]\bruch{x^4}{4}- \bruch{11x^3}{6}+ \bruch{7x^2}{2}]_{0}^{2}[/mm]
> =  [mm]\bruch{10}{3}[/mm] [ok]
>  [ok]
>  [mm]A_{2}=\integral_{2}^{3,5}[/mm] h(x) dx= [ [mm]\bruch{x^4}{4}- \bruch{11x^3}{6}+ \bruch{7x^2}{2}]_{2}^{3,5} \approx 1,558 [/mm]

  [notok]
besser: $ [mm] -\bruch{99}{64}$ [/mm] vor allem negativ!!

>  [mm]A_{3}=\integral_{3,5}^{4}[/mm] h(x) dx= [ [mm]\bruch{x^4}{4}- \bruch{11x^3}{6}+ \bruch{7x^2}{2}]_{3,5}^{4}[/mm]

=  0,88 besser: [mm] $\bruch{169}{192}$ [/mm]

>  
> 1) Hier bin ich mir nicht sicher, muss ich nun in die
> Stammfunktion 3,5 einsetzen und das abziehen? So habe ich
> es hier gemacht.

du hast doch bisher so gerechnet, warum zweifelst du nun?! [verwirrt]
Regel: [mm] $F(\mbox{obere Grenze}) [/mm] - [mm] F(\mbox{untere Grenze}) [/mm]  $ wo ist das Problem?!

> Oder
>  
> 2) Muss ich  [mm]\integral_{2}^{3,5}[/mm] h(x) dx +
> [mm]\integral_{0}^{2}[/mm] h(x) dx davon abziehen?
>  
>
> Also noch mal zur Verdeutlichung: Mein Problem besteht
> darin, dass mich die Nullstellen/Schnittpunkte irritieren.
>
> Inwiefern berechne ich: [mm]\integral_{3,5}^{4}[/mm] h(x) dx
>  Was ist mit diesen 3,5 gemeint? Der Flächeninhalt der
> Funktion bis 3,5 oder einfach nur F(3,5)?
>  
> 3. Schritt
>  Nur der Vollständigkeitshalber:
>  
> [mm]|A_{1}|+|A_{2}|+|A_{3}|=A_{gesamt}[/mm]

Du musst hier Beträge setzen, weil ja die mittlere Fläche unter der x-Achse liegt!


Bezug
                
Bezug
Integralrechnung- 2 Funktionen: kleine Ergänzung ...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:38 Mi 02.02.2005
Autor: dominik

Es geht ja bei dieser Aufgabe um den Inhalt von Flächen, die zwischen zwei Kurven liegen. Da integriert man im betreffenden Teilintervall "obere Kurve minus untere Kurve". Mit dieser Überlegung braucht man sich um die Vorzeichen der Teilflächen keine Sorgen zu machen!

[mm]A = \integral_{0}^{2}{[f(x)-g(x)] dx}+\integral_{2}^{3.5}{[g(x)-f(x)] dx}+\integral_{3.5}^{4}{[f(x)-g(x)] dx}[/mm]

Dabei sind [mm]f(x)-g(x)=h(x)[/mm] und  [mm]g(x)-f(x)=-h(x)[/mm]

Viele Grüsse
dominik

Bezug
                        
Bezug
Integralrechnung- 2 Funktionen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:36 Mi 02.02.2005
Autor: Disap

Hallo.

Erst einmal recht herzlichen Dank für die Antwort von euch und natürlich auch den anderen, die z.B. in den Fragen-Strang einen Blick hineingeworfen haben.

>  du hast doch bisher so gerechnet, warum zweifelst du nun?!
> [verwirrt]
>  Regel: [mm]F(\mbox{obere Grenze}) - F(\mbox{untere Grenze}) [/mm]
> wo ist das Problem?!

Ich habe das Thema anscheinend nicht verstanden, denn für mich würde es mehr Sinn machen, wenn man den Flächeninhalt bis 3,5 errechnet und dann von F(4) abzieht.
Dann muss ich mich wohl noch einmal mit dem Thema auseinandersetzen.


Grüße Disap

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de