www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integralrechnung
Integralrechnung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung: Hilfe bei Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:19 Do 12.02.2015
Autor: Caphter

Aufgabe
Jede Funktion der Schar [mm] J_{k}(x) [/mm] = [mm] \integral_{-k}^{x}{(a*t^2+b) dt} [/mm]
besitzt für x = [mm] \bruch{k*\wurzel{3}}{3} [/mm] eine horizontale Tangente und in (0|?) eine Normale mit der Steigung [mm] \bruch{1}{k²} [/mm] . Geben sie für [mm] J_{k}(x) [/mm] eine integralfreie Darstellung an.

Hallo,
ich brauche Hilfe bei dieser Aufgabe.
Ich weiß nicht, wie ich genau anfangen soll und wie ich überhaupt zu dem Ziel komme.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Danke für Hilfe Gruß

        
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:57 Do 12.02.2015
Autor: angela.h.b.


> Jede Funktion der Schar [mm]J_{k}(x)[/mm] =
> [mm]\integral_{-k}^{x}{(a*t^2+b) dt}[/mm]
>  besitzt für x =
> [mm]\bruch{k*\wurzel{3}}{3}[/mm] eine horizontale Tangente und in
> (0|?) eine Normale mit der Steigung [mm]\bruch{1}{k²}[/mm] . Geben
> sie für [mm]J_{k}(x)[/mm] eine integralfreie Darstellung an.
>  Hallo,
>  ich brauche Hilfe bei dieser Aufgabe.
>  Ich weiß nicht, wie ich genau anfangen soll und wie ich
> überhaupt zu dem Ziel komme.

Hallo,

[willkommenmr].

Wenn ich nichts übersehe, dann wirst Du nie zum Ziel kommen...

Trotzdem kann und muß man aber erstmal beginnen, sonst merkt man ja nicht, daß es nicht funktioniert.
Für den Beginn gibt es eine elegantere und eine nicht sehr elegante Methode.

Laß uns mit der uneleganten beginnen:

es ist  [mm]J_{k}(x)[/mm] =[mm]\integral_{-k}^{x}{(a*t^2+b) dt}[/mm].

Bestimme zunächst zu [mm] f(t)=at^2+b [/mm] eine Stammfunktion F(t).
a und b sind Parameter, behandele sie so, als  stünden dort irgendwelche festen Zahlen.
F(t)=...

Und nun geht's wie gewohnt weiter:

[mm] J_{k}(x)=[/mm] [mm]\integral_{-k}^{x}{(a*t^2+b) dt}[/mm][mm] =[F(t)]_{-k}^{x}=... [/mm]

Da hast Du die integralfreie Darstellung von [mm] J_k. [/mm]


Nun wird behauptet, daß es bei x =  [mm]\bruch{k*\wurzel{3}}{3}[/mm]  eine horizontale Tangente gibt.
Übersetzt: J'_k( [mm]\bruch{k*\wurzel{3}}{3}[/mm] )=0.

Leite ab, setze ein und guck, ob es stimmt.

Das mit der Normalen scheint mir genausowenig zu funktionieren.

LG Angela












>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Danke für Hilfe Gruß


Bezug
                
Bezug
Integralrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:41 Fr 13.02.2015
Autor: Caphter

Erst einmal Danke, für die schnelle Antwort.
Ich bin jetzt so weit:
Habe die Stammfunktion erstellt und abgelitten und für x [mm] (k*\wurzel{3})/3 [/mm] eingesetzt. Das Ergebnis ist [mm] \bruch{3ak²}{9}+b [/mm] = 0

soo.. da Die Normale ja die Steigung -1/mT hat habe ich das zurückgeführt auf -k² als die Steigung der Tangente und diesen Wert in die Erste Ableitung eingesetzt.
Das Ergebnis ist: b=-k².
Jetzt weiß ich aber nicht, wie ich weiter machen soll, um z.B. den Y-Wert des Punktes zu erhalten oder, wie ich den Punkt einsetzen soll.

MfG Caphter

Bezug
                        
Bezug
Integralrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:59 Fr 13.02.2015
Autor: Caphter

Bin noch ein Stück weiter:
Wenn ich b oben einsetzte, kann ich a ausrechnen, welches nun 3 beträgt: a = 3.
Jetzt fehlt mir jedoch noch ein bestimmter Wert für b oder k, um das jeweils andere auszurechnen

Bezug
                                
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:55 Fr 13.02.2015
Autor: MathePower

Hallo Caphter,


> Bin noch ein Stück weiter:
>  Wenn ich b oben einsetzte, kann ich a ausrechnen, welches
> nun 3 beträgt: a = 3.
>  Jetzt fehlt mir jedoch noch ein bestimmter Wert für b
> oder k, um das jeweils andere auszurechnen


Wenn b oder k einen festen Wert annehmen,
dann hast Du keine Schar mehr.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de