www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Integralrechnung
Integralrechnung < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung: Substituenten finden
Status: (Frage) beantwortet Status 
Datum: 11:18 So 23.07.2006
Autor: MabelLeaf

Aufgabe
  [mm] \integral_{a}^{b}{1/ (\wurzel{1+z²})³dx} [/mm]

Hallo,

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Mir ist das Ergebnis dieser Aufgabe bereits bekannt:
[mm] z/\wurzel{z²+1} [/mm]

trotz mehrerer Versuche mittels Substitution, komme ich auf keine funktionierende Variante, weil bei der Differenzierung des Substituenten immer wieder ein z auftaucht, ich also ein 1/z und eine Substitutionsvariable in meinem Term habe.

Wenn mir jemand einen Tipp geben kann, freu ich mich.
Grüße

MabelLeaf

        
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:34 So 23.07.2006
Autor: Pacapear

Hi MableLeaf.



> [...] weil bei der
> Differenzierung des Substituenten immer wieder ein z
> auftaucht, ich also ein 1/z und eine Substitutionsvariable in meinem Term habe. [...]

Wenn ich das richtig verstanden habe, dann ist das z nicht deine Substitutionsvariable, oder?



Das, was du da beschrieben hast, ist eigentlich nicht weiter schlimm.

Dieses Problem hatte ich auch schon öfters.

Manchmal ergibt sich dann der Fall, das es sich das z dann einfach wegkürzt, weil noch ein weiteres z im Integral steht.

Manchmal hilft es aber auch weiter, wenn du deine Substitutionsformel einfach mal nach z umstellst, und das dann in deinem Integral für z einsetzt.

Probiers doch einfach mal aus.

Schönen Sonntag noch.

LG, Nadine

Bezug
                
Bezug
Integralrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:50 So 23.07.2006
Autor: mathemak

Hallo!

Tipp Nr. 1:

Bronstein, Tabelle der Integrale Nr. 206

Problem: kein Rechenweg.

Tipp Nr. 2:

$x = [mm] \sinh(z)$ [/mm] mit [mm] $\frac{\mathrm{d} \,x }{\mathrm{d} z} [/mm] = [mm] \cosh(z)$ [/mm]

und dann immer weiter rechnen ...

bis

[mm] $\int \frac{1}{\cosh(z)^2}\,\mathrm{d}\,z [/mm] = [mm] \frac{\sinh(z)}{\cosh(z)}$ [/mm]

Die Rücksubstitution ergibt dann das gewünschte

Keine einfache Sache für den späten Sonntagnachmittag.

Ach ja .. [mm] $\cosh(\mathrm{arsinh}((x))=\sqrt{1+x^2}$ [/mm]

Tipp 3:

[mm] $\int \frac{1}{\sqrt{1+x^2}} \,\mathrm{d}\,x [/mm] = [mm] \mathrm{arsinh}(x) [/mm] + C$

Gruß

mathemak

Bezug
                        
Bezug
Integralrechnung: danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:15 So 23.07.2006
Autor: MabelLeaf

vielen dank. nachrechnen? *räusper* n ander mal vielleicht. Denke das kommt dann wohl eher nicht in meiner Klausur morgen dran. :)

MabelLeaf

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de