www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integralrechnung
Integralrechnung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung: Uneigentliche Integrale
Status: (Frage) beantwortet Status 
Datum: 17:26 Mo 09.10.2006
Autor: Melli1988

Aufgabe
Gegeben ist die Funktion [mm] f(x)=2/x^2 [/mm]
Berechnen sie den Flächeininhalt zwischen Graph und x-Achse in den folgenden Intervallen: [1;2],[1;5],[1;10],[1;100],[1;1000]

Stellen sie anschließend eine kühne Behauptung auf und beweisen sie diese.

Ich habe die Integrale errechnet: 1, 1.6, 1.8, 1.98, 1.998!

Meine "kühne" Behauptung war, dass sich der Flacheninhalt immer mehr dem Wert 2 annähert, ihn aber nicht erreicht.

Leider weiß ich nicht wie ich das mit dem Beweisen anstellen soll.

Vielleicht hat ja hier jemand nen schlauen Ansatz...

Liebe Grüße



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integralrechnung: Grenzwert des Integrals
Status: (Antwort) fertig Status 
Datum: 17:55 Mo 09.10.2006
Autor: clwoe

Hi,

so ein Integral, das gegen einen Grenzwert läuft, nennt man ein uneigentliches Integral. Das bedeutet, das die Untergrenze deine jeweilige Intervallgrenze ist und die Obergrenze unendlich ist. Nun schreibt man das natürlich nicht so, denn was wäre schon eine Obergrenze die "unendlich" wäre, wo sollte diese Grenze sein??? Deshalb schreibt man für den Ausdruck "unendlich" einfach ein a oder b oder was auch immer und lässt dieses dann gegen unendlich laufen. Das ganze sieht dann so aus:
A ist der Flächeninhalt um den es geht.

[mm] A=\limes_{b\rightarrow\infty}\integral_{1}^{b}{\bruch{2}{x^{2}} dx} [/mm]

[mm] =\limes_{b\rightarrow\infty}[\bruch{-2}{x}]_{1}^{b} [/mm]

[mm] =\limes_{b\rightarrow\infty}\bruch{-2}{b}+2 [/mm]

=0+2=2

Der Bruch [mm] \bruch{-2}{b} [/mm] für b [mm] \to \infty [/mm] geht ja gegen 0. Und somit geht der Wert des Integrals gegen 2.

Ich hoffe ich konnte dir weiterhelfen!

Gruß,
clwoe


Bezug
                
Bezug
Integralrechnung: Dankeschöön!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:06 Mo 09.10.2006
Autor: Melli1988

Ja, vielen Dank!

Du hast mir sehr geholfen!

Liebe Grüße, Melli

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de