www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integralrechnung
Integralrechnung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung: Stammfunktion finden
Status: (Frage) beantwortet Status 
Datum: 20:49 So 08.07.2007
Autor: sandra999

Hallo
Kann mir bitte jemand die folgenden Aufgaben lösen? Ich komme nicht auf das Ergebnis! Ich soll die Stammfunktionen finden:
[mm] \integral \wurzel{x}*(4x^3/\wurzel{x}+2\wurzel{x}-1/\wurzel{x}+1/2x) [/mm]
und
[mm] \integral 8*(2x-10)^3 [/mm]
Vielen Dank

        
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:01 So 08.07.2007
Autor: Somebody


> Hallo
>  Kann mir bitte jemand die folgenden Aufgaben lösen? Ich
> komme nicht auf das Ergebnis! Ich soll die Stammfunktionen
> finden:
>  [mm]\integral \wurzel{x}*(4x^3/\wurzel{x}+2\wurzel{x}-1/\wurzel{x}+1/2x)[/mm]

Hier formst Du mit Vorteil zuerst einmal so um, dass Du unter dem Integral nur noch eine Linarkombination von Potenzen von $x$ hast. Etwa so:
[mm]\int\big(4x^3+2x-1+\frac{1}{2}x^{-\frac{1}{2}}\big)\; dx[/mm]

Davon wirst Du vermutlich selbständig eine Stammfunktion berechnen können.

>  
> und
>  [mm]\integral 8*(2x-10)^3[/mm]

Hier gibt es zwei Möglichkeiten: Du kannst [mm] $(2x-10)^3$ [/mm] ausmultiplizieren, dann hast Du nur noch ein Polynom der Form [mm] $a_3x^3+a_2x^2+a_1x+a_0$ [/mm] als Integrand: das wäre dann kein Problem mehr, nehme ich einmal an.

Die zweite Möglichkeit ist $u(x)=2x-10$ zu substituieren. Dann ist $du = 2dx$ und wir erhalten:
[mm]\int 8(2x-10)^3\, dx = 4\int u^3\, du = 4\cdot \frac{1}{4}u^4+C=\underline{\underline{(2x-10)^4+C}}[/mm]


Bezug
                
Bezug
Integralrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:08 So 08.07.2007
Autor: sandra999

Vielen Dank...
Ich verstehe nicht ganz, wie Du das erste Beispiel umgeform hast?
Danke

Bezug
                        
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:21 So 08.07.2007
Autor: Somebody


> Vielen Dank...
>  Ich verstehe nicht ganz, wie Du das erste Beispiel
> umgeform hast?

Einfach ausmultiplizieren: Schreib also mal den Faktor [mm] $\sqrt{x}$ [/mm] zu jedem der Summnanden, die in der Klammer stehen. Und dann vereinfachst Du diese Summanden was das Zeug hält:

So ist doch etwa [mm] $\sqrt{x}\cdot 4\frac{x^3}{\sqrt{x}}=4x^3$, [/mm] denn [mm] $\sqrt{x}$ [/mm] kann genkürzt werden.

Als nächstes wirst Du [mm] $\sqrt{x}\cdot 2\sqrt{x}=2\sqrt{x}^2=2x$ [/mm] vereinfachen wollen.

Dann kommt das Produkt [mm] $-\sqrt{x}\frac{1}{\sqrt{x}}=-1$, [/mm] denn [mm] $\sqrt{x}$ [/mm] kann gekürzt werden.

Schliesslich kommt noch das Produkt [mm] $\sqrt{x}\frac{1}{2x}=x^{\frac{1}{2}}\cdot \frac{1}{2}\cdot x^{-1} [/mm] = [mm] \frac{1}{2}\cdot x^{\frac{1}{2}-1}=\frac{1}{2}x^{-\frac{1}{2}}$ [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de