www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integralrechnung
Integralrechnung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:53 Di 25.01.2005
Autor: Logan

Hi Leute,

ich habe ein Problem mit zwei Aufgabe.
Vielleicht könnt ihr mir dabei helfen.

Aufgabe:
a)
Gegeben ist die Funktion [mm] f(x)= \bruch{1}{2}x^4 - 3x^2[/mm].
Berechne die Nullstellen, Extrempunkte und Wendepunkte von f und zeichne den Graphen für [mm]x \in [-2,5;2,5][/mm].

-->
Die Nullstellen, Estrempunkte und Wendepunkte habe ich schon berechnet.
Nullstellen: [mm][mm] x_1= [/mm] 0 v [mm] x_2= \wurzel{6} [/mm] v [mm] x_3= -\wurzel{6}[/mm9 [/mm]
Extremstellen: [mm]Hochpunkt (0|0), Tiefpunkt_1 (\wurzel{3}|-4,5), Tiefpunkt_2 (-\wurzel{3}|-4,5)[/mm]
Wendepunkte: [mm]x_1=1 v x_2=1[/mm]
Hierbei verstehe ich nicht, wie ich die Angabe [mm]x \in [-2,5;2,5][/mm] nutzen soll.

b)
Berechne die Fläche, die der Graph von f mit seinen Wendetangenten einschließt ! Zeichne hierzu zunächst die Wendetangenten in die Zeichnung von Teil a) ein und schraffiere die gesuchte Fläche.

-->
Hier weiß ich gar nicht wie ich vorgehen soll. Ich schätze mal mit der  Integralrechenweise.
Da das aber schon einige Zeit her ist, als wir das gemacht haben, weiß ich nicht mehr wie das geht.


        
Bezug
Integralrechnung: Korrektur + Hinweise
Status: (Antwort) fertig Status 
Datum: 19:30 Di 25.01.2005
Autor: Loddar

Hallo Logan!


> Aufgabe:
> a) Gegeben ist die Funktion [mm]f(x)= \bruch{1}{2}x^4 - 3x^2[/mm].
>  
> Berechne die Nullstellen, Extrempunkte und Wendepunkte von
> f und zeichne den Graphen für [mm]x \in [-2,5;2,5][/mm].
>  
> -->
> Die Nullstellen, Extrempunkte und Wendepunkte habe ich
> schon berechnet.
> Nullstellen: [mm]x_1= 0[/mm] v [mm]x_2= \wurzel{6}[/mm] v [mm]x_3= -\wurzel{6}[/mm]

> Extremstellen: [mm]Hochpunkt (0|0), Tiefpunkt_1 (\wurzel{3}|-4,5), Tiefpunkt_2 (-\wurzel{3}|-4,5)[/mm]

[daumenhoch]


> Wendepunkte: [mm]x_1=1[/mm]  v  [mm]x_2=1[/mm]

Ich nehme an, hier hast Du dich nur vertippt: [mm] $x_{W1,2} [/mm] = [mm] \red{\pm} [/mm] \ 1$
Was ist mit den dazugehörigen y-Werten?



> Hierbei verstehe ich nicht, wie ich die Angabe [mm]x \in [-2,5;2,5][/mm]
> nutzen soll.

Da Du die Kurve zeichnen sollst, wurde Dir hier ein Intervall vorgegeben.
(Indirekt steckt auch hier drin, daß alle, oder zumindest die meisten,  relevanten Punkte innerhalb dieses Intervalles liegen - das ist aber kein Muß!)


> b) Berechne die Fläche, die der Graph von f mit seinen Wendetangenten
> einschließt ! Zeichne hierzu zunächst die Wendetangenten in die
> Zeichnung von Teil a) ein und schraffiere die gesuchte Fläche.

> -->
> Hier weiß ich gar nicht wie ich vorgehen soll. Ich schätze mal mit der
> Integralrechenweise.

[daumenhoch]


Zunächst aber mußt du Dir aber die Funktionsvorschriften der beiden Wendetangenten ermitteln (aus Symmetriegründen genügt aber auch nur eine).

Von dieser Wendetangente [mm] $t_1(x)$ [/mm] kennen wir ja bereits einen Punkt (der Wendepunkt) sowie können uns die Steigung ermitteln (da ja gilt: [mm] $m_t [/mm] = [mm] f'(x_W)$). [/mm]

Die Fläche erhalten wir dann über den Ansatz:
$|A| \ = \ [mm] \integral_{a}^{b} [/mm] {[f(x) - t(x)]dx}$

Aus Symmetriegründen gilt dann:
$|A| \ = \ [mm] 2*\integral_{0}^{x_W} [/mm] {[f(x) - t(x)]dx}$


Kommst Du nun alleine weiter? Bitte poste doch später noch Deine Ergebnisse hier ...

Loddar


Bezug
                
Bezug
Integralrechnung: Mögliche Lösung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:54 Di 25.01.2005
Autor: Logan

Ersteinmal Danke für die Hilfe.
Als Endergebnis habe ich [mm]\bruch{2}{5} FE[/mm].

Bezug
                        
Bezug
Integralrechnung: Halbe Fläche ??
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:44 Mi 26.01.2005
Autor: Loddar

Guten Morgen Logan!

>  Als Endergebnis habe ich [mm]\bruch{2}{5} FE[/mm].

Das ist dann aber das Ergebnis für die halbe Fläche, also in den Grenzen von $a=0$ bis $b=1$, oder?

Für die Gesamtfläche (nach der ja gefragt ist) mußt Du diesen Wert dann noch verdoppeln (wie oben erwähnt: wegen Symmetrie).


Gruß
Loddar



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de