www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Integralrechnung
Integralrechnung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung: Frage
Status: (Frage) beantwortet Status 
Datum: 01:59 So 06.02.2005
Autor: Sue20

Hallo!

Wie wird [mm] \integral {\wurzel{1+x²} dx} [/mm] integriert?
Es geht nicht mit der Substitutionsregel, da bei u = 1+x² -> xdx = 1/2 du.

        
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:00 So 06.02.2005
Autor: andreas

hi Sue

hier bietet sich die substitution [m] x = \sinh u [/m] an, da sich dann wegen des theorems [m] \cosh^2 u = 1 + \sinh^2 u [/m] die wurzel auflöst.


grüße
andreas

Bezug
                
Bezug
Integralrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:56 So 06.02.2005
Autor: Sue20

Hallo Andreas,

das Integral war Lösung einer Aufgabe zu Kurvenlängen:

Berechnen der Länge der Kurve y =  [mm] \bruch{1}{2}x², [/mm] -1 [mm] \lex \le1 [/mm]

Am Ende muss rauskommen: [mm] \wurzel{2} [/mm] + ln(1 + [mm] \wurzel{2}) \approx [/mm] 2,30 (also ohne diesen sinh)

Wenn ich das Integral  [mm] \integral_{-1}^{1} {\wurzel{1+x²} dx} [/mm] in meinen Taschenrechner eingebe, kommt auch dieser Wert heraus.

Eine weitere Aufgabe ist:

x(t) = ln t, y(t) = [mm] 2\wurzel{t}, [/mm] 3 [mm] \le [/mm] t [mm] \le8 [/mm]

Dabei kommt das Integral
[mm] \integral_{3}^{8} {\wurzel{\bruch{1}{t} + \bruch{1}{\wurzel{t}}} dt} [/mm] heraus.

Lösung ist: 2 + ln  [mm] \bruch{3}{2} \approx [/mm] 2.41

Wie kommt man darauf?

MfG Sue

Bezug
                        
Bezug
Integralrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:00 So 06.02.2005
Autor: Sue20

Sorry, nach dem Quadrieren lautet das Integral in der 2. Aufgabe natürlich:

[mm] \integral_{3}^{8} {\wurzel{\bruch{1}{t²} + \bruch{1}{t}} dx} [/mm]

Bezug
                        
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:27 So 06.02.2005
Autor: andreas

hi

zu der ersten aufgabe: ich bin mir recht sicher, dass da diese sinh-substitution zum ziel führt. den logarithmus erhälst du, da deine grenzen dann entsprechend [m] \textrm{areasinh}(-1) [/m] und [m] \textrm{areasinh}(1) [/m] sind (wobei [m] \textrm{areasinh} [/m] die umkehrfunktion des sinushyperbolicus bezeichne) und die formel [m]\textrm{areasinh}(x) = \ln(x + \sqrt{x^2 + 1}) [/m] gilt (schaue dazu am besten mal im bronstein oder einer ähnlichen formelsamlung nach ...)

zu deiner neu gestellten aufgabe würde ich dir empfehlen alles auf einen bruchstrich zu bringen und wieder das [m] \frac{1}{t^2} [/m] aus der wurzel zu ziehen. so erhälst du dann nach den angeben in deiner mitteileung [m] \int_3^8 \frac{\sqrt{1 + t}}{t} \, \textrm{d}t [/m] substituierst du nun [m] s = \sqrt{1+t} [/m], also [m] t = s^2 + 1 [/m] und [m] \textrm{d}t = 2s \, \textrm{d}s [/m] so geht das integral über in [m] \int_2^3 \frac{s}{s^2 + 1} 2s \, \textrm{d}s [/m] und das sollte mit polynomdivision und anschliesender partialbruchzerlegung zu lösen sein.

probiere mal dein glück.

grüße
andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de