www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Integralrechnung
Integralrechnung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung: Stammfunktion bestimmen
Status: (Frage) beantwortet Status 
Datum: 12:25 Sa 26.07.2008
Autor: eldanielo

Aufgabe
Skizzieren sie sorgfältig die Menge:
[mm] B=\{(x,y) \in \IR^{2} | x\ge 0, y\ge 0, x^{2} +y^{2} \le 1 \} [/mm]

und bestimmen sie das Integral:

[mm] \integral_{B}^{}{\bruch{2y}{(1 + x^{2} + y^{2})^{2} } d(x,y)} [/mm]


Hey,

das skizzieren der Menge ist kein Problem, Probleme bekomme ich erst bei der Bildung der Stammfunktion.

Man muss ja das Doppelintegral von [mm] \integral_{0}^{1}\integral_{0}^{\wurzel{1 - x^{2}}}{\bruch{2y}{(1+x^{2}+ y^{2})^{2}} dxdy} [/mm] bestimmen.

Gibt es da eine recht einfache Möglichkeit die stammfunktion zu bilden? Hab mehrere Aufgaben wo ich größere Probleme habe die Stammfunktion zu bilden.

Ich danke euch schonmal für die Hilfe!
freundliche grüße
eldanielo

        
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:24 Sa 26.07.2008
Autor: steppenhahn


> Skizzieren sie sorgfältig die Menge:
>  [mm]B=\{(x,y) \in \IR^{2} | x\ge 0, y\ge 0, x^{2} +y^{2} \le 1 \}[/mm]
>  
> und bestimmen sie das Integral:
>  
> [mm]\integral_{B}^{}{\bruch{2y}{(1 + x^{2} + y^{2})^{2} } d(x,y)}[/mm]
>  
>
> Hey,
>  
> das skizzieren der Menge ist kein Problem, Probleme bekomme
> ich erst bei der Bildung der Stammfunktion.
>
> Man muss ja das Doppelintegral von
> [mm]\integral_{0}^{1}\integral_{0}^{\wurzel{1 - x^{2}}}{\bruch{2y}{(1+x^{2}+ y^{2})^{2}} dxdy}[/mm]
> bestimmen.
>  
> Gibt es da eine recht einfache Möglichkeit die
> stammfunktion zu bilden? Hab mehrere Aufgaben wo ich
> größere Probleme habe die Stammfunktion zu bilden.
>  
> Ich danke euch schonmal für die Hilfe!
>  freundliche grüße
>  eldanielo

Hallo!

Ihr hattet sicher schon sowas ähnliches wie Satz von Fubini, oder? Ist auch egal, für dieses spezielle Integral würde ich dir empfehlen, "im Inneren" nach y zu integrieren. Da kann man nämlich was schönes machen, weil

[mm] \bruch{2y}{(1+x^{2}+ y^{2})^{2}} [/mm] = [mm] \bruch{\partial}{\partial y}\left(\bruch{-1}{1+x^{2}+y^{2}}\right) [/mm]

wie man nach kurzem Schauen leicht sieht :-) (Im Zähler steht die Ableitung des Terms im Nenner in der Potenz!)
Dann kannst du das Integral "weglassen" und musst nur noch die Grenzen einsetzen! Der resultierende Term lässt sich leicht integrieren.

Falls du das nicht tun möchtest, (also du willst lieber nach x integrieren), so kannst du erstmal Konstanten aus dem Integral herausziehen. Denn wenn du nach x integrierst, ist y Konstante:

[mm]\integral_{0}^{1}\integral_{0}^{\wurzel{1 - x^{2}}}{\bruch{2y}{(1+x^{2}+ y^{2})^{2}} dxdy}[/mm]

[mm]=\integral_{0}^{1}2y*\integral_{0}^{\wurzel{1 - x^{2}}}{\bruch{1}{(1+x^{2}+ y^{2})^{2}} dxdy}[/mm]

Beim Genauen Hinsehen (und das ist bei vielen Variablen wichtig) siehst du, dass du im Grunde im Integral einen Term der Form

[mm] \bruch{1}{\left(x^{2}+a\right)^{2}} [/mm]

stehen hast. Wie man das jetzt konkret integriert, weiß ich nicht (vermute Partielle Integration), aber ich würde dir obigen Weg ans Herz legen :-)

Stefan.

Bezug
        
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:25 Sa 26.07.2008
Autor: angela.h.b.


> Skizzieren sie sorgfältig die Menge:
>  [mm]B=\{(x,y) \in \IR^{2} | x\ge 0, y\ge 0, x^{2} +y^{2} \le 1 \}[/mm]
>  
> und bestimmen sie das Integral:
>  
> [mm]\integral_{B}^{}{\bruch{2y}{(1 + x^{2} + y^{2})^{2} } d(x,y)}[/mm]
>  
>
> Hey,
>  
> das skizzieren der Menge ist kein Problem, Probleme bekomme
> ich erst bei der Bildung der Stammfunktion.
>
> Man muss ja das Doppelintegral von
> [mm]\integral_{0}^{1}\integral_{0}^{\wurzel{1 - x^{2}}}{\bruch{2y}{(1+x^{2}+ y^{2})^{2}} dxdy}[/mm]
> bestimmen.

Hallo,

Du mußt hier die Integrationsvariablen vertauschen.

Richtig ist [mm] \integral_{0}^{1}\integral_{0}^{\wurzel{1 - x^{2}}}{\bruch{2y}{(1+x^{2}+ y^{2})^{2}} dydx}, [/mm] denn es ist ja das y, welches zwischen 0 und [mm] \wurzel{1 - x^{2}} [/mm] läuft.


>  
> Gibt es da eine recht einfache Möglichkeit die
> stammfunktion zu bilden? Hab mehrere Aufgaben wo ich
> größere Probleme habe die Stammfunktion zu bilden.

Da das Gebiet ein Viertelkreis ist, könntest Du auch in Polarkoordinaten arbeiten. Kommt halt' drauf an, ob Ihr das hattet oder nicht.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de