www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integralrechnung
Integralrechnung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:31 Fr 14.08.2009
Autor: hamma

berechnung eines integrals,

[mm] \integral_{a}^{b}{\bruch{x^3+9x-9}{(x^2-3x)(x-3)} dx} [/mm]  = [mm] \integral_{a}^{b}{\bruch{x^3+9x-9}{x(x-3)^2} dx} [/mm]

jetzt kann ich partialbruchzerlegung anwenden
[mm] \bruch{A}{x}+\bruch{B}{(x-3)}+\bruch{C}{(x-3)^2} [/mm]

[mm] \bruch{x^3+9x-9}{x^2-3x)(x-3)} [/mm] = [mm] \bruch{A}{x}+\bruch{B}{(x-3)}+\bruch{C}{(x-3)^2} [/mm]

danach wird ein gleichnamiger Hauptnenner gemacht und habe dann folgende Gleichung,

[mm] x^3+9x-9 [/mm] = [mm] A(x-3)^2+B(x-3)x+C*x [/mm]

so, jetzt müsste man als nächstes das gleichungssystem anwenden und komm dabei auf das falsche ergebnis oder meine rechnung ist falsch.
ich wäre froh wenn mir jemand einen ansatz geben könnte um die rechnung fortzuführen.












        
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:55 Fr 14.08.2009
Autor: schachuzipus

Hallo Markus,

> berechnung eines integrals,
>  
> [mm]\integral_{a}^{b}{\bruch{x^3+9x-9}{(x^2-3x)(x-3)} dx}[/mm]  =
> [mm]\integral_{a}^{b}{\bruch{x^3+9x-9}{x(x-3)^2} dx}[/mm]
>  
> jetzt kann ich partialbruchzerlegung anwenden
>   [mm]\bruch{A}{x}+\bruch{B}{(x-3)}+\bruch{C}{(x-3)^2}[/mm]
>  
> [mm]\bruch{x^3+9x-9}{x^2-3x)(x-3)}[/mm] =
> [mm]\bruch{A}{x}+\bruch{B}{(x-3)}+\bruch{C}{(x-3)^2}[/mm]
>  
> danach wird ein gleichnamiger Hauptnenner gemacht und habe
> dann folgende Gleichung,
>  
> [mm]x^3+9x-9[/mm] = [mm]A(x-3)^2+B(x-3)x+C*x[/mm]

Ja, das wäre der richtige Ansatz und die Rechnungen wären auch korrekt, aber leider klappt das so noch nicht

Zähler- und Nennergrad sind ja gleich (nämlich 3)

Mache also mal zuerst eine Polynomdivision und dann eine PBZ, dann klappt das auch ...

>  
> so, jetzt müsste man als nächstes das gleichungssystem
> anwenden und komm dabei auf das falsche ergebnis oder meine
> rechnung ist falsch.
>  ich wäre froh wenn mir jemand einen ansatz geben könnte
> um die rechnung fortzuführen.

LG

schachuzipus

>
>
>
>
>
>
>
>  


Bezug
                
Bezug
Integralrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:07 Fr 14.08.2009
Autor: hamma

danke, das dass keine echt gebrochenrationale funktionist habe  ich auf den erste blick nicht gesehn, nochmals danke.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de