www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integralrechnung
Integralrechnung < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung: Lösungsvorschlag zur Aufgabe
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:06 So 25.09.2005
Autor: Fruchtsaft

Hallo,

und nun habe ich Aufgabenfrage zur Integralrechnung..
[mm]f(x):=(a+x^2)exp^x[/mm]
1.)Mittels partielle Integration das Intregal [mm] \integral_{0}^{1} {(a+x^2)exp^x *dx}[/mm]bestimmen.


ich versuche mich mal
zu 1.) [mm] f'(x)=(2x+a+x^2)exp^x [/mm]

$ [mm] \left[ (\frac{1}{2}a^2 + \frac{1}{3}x^3) exp^x \right]_1^0 [/mm] $ -  [mm] $\integral_{0}^{1} {(a+x^2) exp^x dx}$ [/mm]
=[mm](\frac{1}{2}a^2+\frac{1}{3})* exp) [/mm] -  $ [mm] \left[ (a + x^2) exp^x \right]_1^0 [/mm] $
=[mm](\frac{1}{2}a^2+\frac{1}{3})* exp) [/mm] - [mm] (a + 1) exp [/mm]
=[mm]\frac{1}{2}a+\frac{2}{3} [/mm]

Das wäre meiner bescheidenen Mathekenntnissen nach das Ergebnis...

Gruss

Fruchtsaft




        
Bezug
Integralrechnung: partielle Integration
Status: (Antwort) fertig Status 
Datum: 12:21 So 25.09.2005
Autor: Loddar

Hallo Fruchtsaft!


Ich glaube, Du hast das Prinzip der MBpartiellen Integration noch nicht so ganz verinnerlicht.

Die Formel lautet ja:  [mm] $\integral{u'*v \ dx} [/mm] \ = \ u*v - [mm] \integral{u*v' \ dx}$ [/mm]


In unserem Falle solltest Du das Integral zunächst zerlegen:

[mm] $\integral{\left(a+x^2\right)*e^x \ dx} [/mm] \ = \ [mm] \integral{a*e^x \ dx} [/mm] + [mm] \integral{x^2*e^x \ dx} [/mm] \ = \ [mm] a*\integral{e^x \ dx} [/mm] + [mm] \integral{x^2*e^x \ dx}$ [/mm]


Das erste Integral sollte ja nun nicht das Problem sein, oder?


Sehen wir uns das zweite an:

[mm] $\integral{x^2*e^x \ dx} [/mm] \ = \ ...$

Hier wählen wir nun:

$u' \ := \ [mm] e^x$ $\Rightarrow$ [/mm]     $u \ = \ [mm] e^x$ [/mm]

$v \ := \ [mm] x^2$ $\Rightarrow$ [/mm]     $v' \ = \ 2x$


Dies setzen wir nun ein in die Formel:

[mm] $\integral{x^2*e^x \ dx} [/mm] \ = \ [mm] e^x [/mm] * [mm] x^2 [/mm] - [mm] \integral{2x*e^x \ dx} [/mm] \ = \ [mm] x^2*e^x [/mm] - [mm] 2*\integral{x*e^x \ dx}$ [/mm]


Für das zweite Integral müssen wir nun nochmal die partielle Integration anwenden.

Willst Du es  nun mal probieren?


Gruß
Loddar


Bezug
                
Bezug
Integralrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:03 So 25.09.2005
Autor: Fruchtsaft

Danke für die schnelle Antwort...

Ich rekapituliere und versuche zu vervollständigen.

Also, zunächst wende ich die Grundformel für das Integral einer Summe an.

$ [mm] \integral{\left(a+x^2\right)\cdot{}e^x \ dx} [/mm] \ = \ [mm] \integral{a\cdot{}e^x \ dx} [/mm] + [mm] \integral{x^2\cdot{}e^x \ dx} [/mm] \  $
Wenn ich dich jetzt richtig verstanden habe, berechne ich diese beiden "Teilintegrale" seperat..

[mm]\ \integral{a\cdot{}e^x \ dx}[/mm]=$ a* [mm] \left[ e^x \right]_1^0 [/mm] $ = e

Oder?

> Dies setzen wir nun ein in die Formel:
>  
> [mm]\integral{x^2*e^x \ dx} \ = \ e^x * x^2 - \integral{2x*e^x \ dx} \ = \ x^2*e^x - 2*\integral{x*e^x \ dx}[/mm]

Das muss doch heissen:
[mm]\integral{ \bruch{1}{3}x^3*e^x \ dx} \ = \ e^x * x^2 - \integral{2x*e^x \ dx} \ = \ x^2*e^x - 2*\integral{x*e^x \ dx}[/mm]

$ [mm] \integral{x^2\cdot{}e^x \ dx} [/mm] \ = \ [mm] e^x \cdot{} x^2 [/mm] - [mm] \integral{2x\cdot{}e^x \ dx} [/mm] \ = \ [mm] x^2\cdot{}e^x [/mm] - [mm] 2\cdot{}\integral{x\cdot{}e^x \ dx} [/mm] $
=[mm]x^2*e^x - 2e[/mm]

Das ganze wiedeer auf das Ursprungsintegral:
$ [mm] \integral{\left(a+x^2\right)\cdot{}e^x \ dx} [/mm] \ = \ [mm] \integral{a\cdot{}e^x \ dx} [/mm] + [mm] \integral{x^2\cdot{}e^x \ dx} [/mm] \  $
=e+[mm]x^2*e^x - 2e[/mm]
=[mm]x^2*e^x-2[/mm]

?

Gruss

Bezug
                        
Bezug
Integralrechnung: hoffe das stimmt so!
Status: (Antwort) noch nicht fertig Status 
Datum: 20:22 So 25.09.2005
Autor: Fusioner

hallo fruchtsaft
der server geht leider dauernd down.

>  
> Also, zunächst wende ich die Grundformel für das Integral
> einer Summe an.
>  
> [mm]\integral{\left(a+x^2\right)\cdot{}e^x \ dx} \ = \ \integral{a\cdot{}e^x \ dx} + \integral{x^2\cdot{}e^x \ dx} \ [/mm]
>  
> Wenn ich dich jetzt richtig verstanden habe, berechne ich
> diese beiden "Teilintegrale" seperat..
>  
> [mm]\ \integral{a\cdot{}e^x \ dx}[/mm]=[mm] a* \left[ e^x \right]_1^0=e^x[/mm]
>  
> Oder?

genau richtig

>
> > Dies setzen wir nun ein in die Formel:
>  >  
> > [mm]\integral{x^2*e^x \ dx} \ = \ e^x * x^2 - \integral{2x*e^x \ dx} \ = \ x^2*e^x - 2*\integral{x*e^x \ dx}[/mm]


bis hier hin ist es richtig danach so

es fehlt dir nur noch [mm]\integral e^x\*x dx[/mm]
also machst du  wieder partielle integration und setzt für
u ´ [mm] =e^x [/mm] und [mm] u=e^x [/mm]  für v=x also v´=1 in die Formel ein und erhältst sowas wie

[mm]2\*e^x\*x-2\*\integral{e^x dx}[/mm].

jetzt setzt du alles (deine 4 integrationen), wieder zusammen auch den term mit a
und solltest dann wenn ich nicht falsch gerechnet hab [mm]e^x\*(a+x^2-2x-2)[/mm] erhalten.



ich glaube das müsste so stimmen

gruß fusi

Bezug
                                
Bezug
Integralrechnung: Kontrolle
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:03 So 25.09.2005
Autor: MathePower

Hallo Fusioner,

> [mm]e^x\*(a+x^2-2x-2)[/mm] erhalten.

das muss [mm]e^x\*(a+x^2-2x+2)[/mm] heißen.

Gruß
MathePower

Bezug
                                        
Bezug
Integralrechnung: danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:09 Mo 26.09.2005
Autor: Fusioner

verdammte vorzeichen fehler!!!!!!!!!!!! :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de