www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integralrechnung 1
Integralrechnung 1 < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung 1: Tipp
Status: (Frage) beantwortet Status 
Datum: 19:41 Mi 30.05.2012
Autor: Sonnenblume2401

Aufgabe
Hallo an alle!

Berechne [mm] $\integral{\wurzel{a^2-x^2} dx}$! [/mm]

Kònnte mir bitte bitte jemand einen Tipp geben?
Mir fehlt die Multiplikation mit $x$, ansonsten kònnte ich substituiren.

Danke danke an alle!

        
Bezug
Integralrechnung 1: Antwort
Status: (Antwort) fertig Status 
Datum: 19:51 Mi 30.05.2012
Autor: reverend

Hallo Sonnenblume,

Substitution ist hier tatsächlich das Thema.

> Berechne [mm]\integral{\wurzel{a^2-x^2} dx}[/mm]!
>  Kònnte mir bitte
> bitte jemand einen Tipp geben?
>  Mir fehlt die Multiplikation mit [mm]x[/mm], ansonsten kònnte ich
> substituiren.

Substituiere [mm] u=a\sin{x} [/mm]

Später hilft es noch zu wissen, dass [mm] \cos{(2u)}=2\cos^2{(u)}-1 [/mm] ist.

Allerdings wird nach der noch eher einfachen Integration die Rücksubstitution wenig spaßig, aber ich sehe gerade keinen anderen Weg, wie man die Aufgabe sonst löst.
Das ist ein typisches Integral, das man in einer Integrationstafel nachsieht... Genau daher kenne ich auch die Lösung. ;-)

Grüße
reverend


Bezug
                
Bezug
Integralrechnung 1: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:54 Mi 30.05.2012
Autor: Vectorspace

Wenn du eine schöne (ist sie das?) Lösung mit Schritten haben möchtest, dann sieh sie dir in Wolfram Alpha an. Da ist der erste Schritt die Substitution, wie sie dir schon vorgeschlagen wurde.

Bezug
                
Bezug
Integralrechnung 1: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:21 Do 31.05.2012
Autor: Sonnenblume2401

Hallo!
Danke an alle.

Habe das Integral mit Wolfram Alpha ausgerechnet. Mir ist aber die Rùcksubstitution etwas unklar:
Man substituiert: [mm] $x=a\sin(u)$, [/mm] daraus: [mm] $u=\arcsin(\bruch{x}{a})$. [/mm]
Ein Teil des Ergenisses des Integrals "mit u" lauetet: [mm] $a^2\bruch{\sin(2u)}{4}$. [/mm]
Wolfram Alpha schreibt dann nach der Rùcksubstitution: [mm] $\bruch{ax}{2}\sqrt{1-\bruch{x^2}{a^2}}$. [/mm]
Kònnte mir bitte bitte jemand diesen letzten Schritt erklàren?

Danke an alle.

Bezug
                        
Bezug
Integralrechnung 1: Antwort
Status: (Antwort) fertig Status 
Datum: 04:08 Do 31.05.2012
Autor: angela.h.b.


> Hallo!
> Danke an alle.
>  
> Habe das Integral mit Wolfram Alpha ausgerechnet. Mir ist
> aber die Rùcksubstitution etwas unklar:
>  Man substituiert: [mm]x=a\sin(u)[/mm], daraus:
> [mm]u=\arcsin(\bruch{x}{a})[/mm].

Hallo,


>  Ein Teil des Ergenisses des Integrals "mit u" lauetet:
> [mm]a^2\bruch{\sin(2u)}{4}[/mm].

[mm] =a^2*\bruch{2\sin(t)\cos(t)}{4} [/mm]

[mm] =a^2*\bruch{2\sin(t)\wurzel{1-sin^2t}}{4} [/mm]

LG Angela


>  Wolfram Alpha schreibt dann nach der Rùcksubstitution:
> [mm]\bruch{ax}{2}\sqrt{1-\bruch{x^2}{a^2}}[/mm].
>  Kònnte mir bitte bitte jemand diesen letzten Schritt
> erklàren?
>  
> Danke an alle.


Bezug
        
Bezug
Integralrechnung 1: elementargeometrische Lösung
Status: (Antwort) fertig Status 
Datum: 13:23 So 10.06.2012
Autor: Al-Chwarizmi


> Berechne [mm]\integral{\wurzel{a^2-x^2}\ dx}[/mm]  !

>  Könnte mir bitte bitte jemand einen Tipp geben?



Hallo Sonnenblume,

man könnte sich für diese Aufgabe auch einen Weg ohne
Integralrechnung, stattdessen mit Elementargeometrie
vorstellen !
Die Kurve mit der Gleichung  $\ y\ =\ [mm] \sqrt{a^2-x^2}$ [/mm]
ist der Halbkreis mit Radius a und (Kreis-)Mittelpunkt (0|0)
oberhalb der x-Achse. Der Definitionsbereich (für reelle y)
ist das Intervall [-a , a] .

Die Stammfunktion wird (für 0<x<a) dargestellt durch
den Flächeninhalt des Gebietes zwischen x-Achse, Halb-
kreis und den Geraden [mm] x_1=0 [/mm] und [mm] x_1=x [/mm] .
Diesen Flächeninhalt kann man elementargeometrisch
berechnen durch Addition der Flächeninhalte eines
rechtwinkligen Dreiecks mit den Katheten x und [mm] \sqrt{a^2-x^2} [/mm]
und eines Kreisektors mit Radius a und Zentriwinkel
[mm] $\varphi\ [/mm] =\ [mm] arcsin\left(\frac{x}{a}\right)$ [/mm]

So erhält man die Stammfunktion

    $\ F(x)\ =\ [mm] \underbrace{\frac{1}{2}*x*\sqrt{a^2-x^2}}_{Dreiecksfl\ddot ache}\ [/mm] +\ [mm] \underbrace{\frac{1}{2}*a^2*arcsin\left(\frac{x}{a}\right)}_{Sektorfl\ddot ache}$ [/mm]  

    $\ F(x)\ =\ [mm] \frac{1}{2}*\left(x*\sqrt{a^2-x^2}\ +\ a^2*arcsin\left(\frac{x}{a}\right)\right)$ [/mm]

Diese ist dann nicht nur für [mm] 0 [mm] -a\le{x}\le{a} [/mm] .

LG   Al-Chwarizmi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de