www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integralrechnung zur Flächenb.
Integralrechnung zur Flächenb. < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung zur Flächenb.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:07 Di 12.12.2006
Autor: Ochi

Aufgabe
Für k>0 ist die Funktion $ [mm] f_k [/mm] $ gegeben durch $ [mm] f_k(x)=k(-x^3+3x+4) [/mm] $  Bestimmen Sie k so, dass das Schaubild von $ [mm] f_k [/mm] $ mit der Tangente im Hochpunkt eine Fläche mit dem Flächeninhalt 45 einschließt.

hallo,
meine frau möchte diese aufgabe lösen. hierzu hat sie folgende ersten schritte getan:

$ [mm] k(-x^3+3x+4)=0 [/mm]  $  das ergibt die nullstellen.

wie sieht nun der lösungsweg der nullstellen aus? evtl. mit polynomdivision?
wie sieht der lösungsweg der aufgabe aus?

danke und viele grüße, ochi.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integralrechnung zur Flächenb.: Antwort
Status: (Antwort) fertig Status 
Datum: 12:25 Di 12.12.2006
Autor: M.Rex

Hallo.

Man braucht hier dein Hochpunkt und die Stammfunktion von [mm] f_{k} [/mm]
Und dann die Tangente am Hochpunkt:

Fangen wir mit den Ableitungen und der Stammfunktion an.

[mm] f_{k}(x)=k(-x^3+3x+4)=-kx³+3kx+4k [/mm]
f'_{k}(x)=-3kx²+3k
f''{k}(x)=-6kx

[mm] F_{k}(x)=-\bruch{kx^{4}}{4}+\bruch{3kx²}{2}+4kx [/mm]

Zum Hochpunkt:

-3kx²+3k=0
[mm] \gdw x=\pm1 [/mm]
[mm] \Rightarrow [/mm] Hochpunkt: H (1/6k)

Tangente in H
Allgemein hat eine Tangente die Form t(x)=mx+n, hier, da sie im Hochpunkt verläuft, m=0 [mm] \Rightarrow [/mm] n=6k
Also t(x)=6k

Jetzt zum Integral:

Schnittpunkte Tangente-Funktion:

-kx³+3kx+4k=6k
[mm] \gdw-kx³+3kx-2k=0 [/mm]
[mm] \gdw [/mm] k(-x³+3x-2)
Nach Polynomdivision und Zerlegen in Linearfaktoren:

=k(x-1)²(x+2) [mm] \Rightarrow [/mm] Schnittstellen: -2, 1

Das heisst, gesucht ist das k für das gilt:
[mm] \integral_{-2}^{1}{6k-(-kx³+3kx+4k)dx}=45 [/mm]
[mm] \gdw\integral_{-2}^{1}{kx³-3kx+2k)dx}=45 [/mm]

Das auszurechnen sollte jetzt kein Problem mehr sein.

Marius

Bezug
                
Bezug
Integralrechnung zur Flächenb.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:19 Di 12.12.2006
Autor: Ochi

vielen dank, christiane hat es gecheckt und ist sehr dankbar! :-)
gruß, ochi.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de