www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integralumformung
Integralumformung < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralumformung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:55 Mi 20.10.2010
Autor: euli

Aufgabe
Seien $a >0$ konstant und $t>0$. Seien $f$, $g$ und $h$ reelle, stetige und differenzierbare Funktionen von [mm] \mathds{R} [/mm] nach [mm] \mathds{R} [/mm] und $h(0)=0$. Lässt sich der Ausdruck [mm] $a\int_0^t g(f(t-s))\; \frac{d h(s)}{ds}\; [/mm] ds$ umformen in [mm] $A\left( h(t)-\int_0^t \frac{dg}{df}(s)\; h(t-s)\; ds \right)$, [/mm] wobei $A$ zu bestimmen ist und nur von $f$, $t$ und $a$ abhängt?

Ich selber habe es mit partieller Integration und anschließender Substitution probiert, habe es aber nicht hingekriegt. Wäre für eine Antwort, Ideen und Tipps sehr dankbar.

Viele Grüße, euli

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integralumformung: Nachfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:36 Mi 20.10.2010
Autor: reverend

Hallo euli, nochmal [willkommenmr]

Ich sehe im Moment auch keinen Weg, das so umzuformen. Ist denn über g,f,h noch irgendetwas bekannt?
Sind z.B. g und h gerade oder ungerade Funktionen? Und steht in der Zielform tatsächlich df im Nenner?

Grüße
reverend


Bezug
                
Bezug
Integralumformung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:46 Do 21.10.2010
Autor: euli

Hallo reverend,

mit [mm] \frac{dg}{df}(s) [/mm] meinte ich [mm] \dot{g}(f(s)) [/mm] bzw. $g'(f(s))$. Ich weiss noch, dass $g(0)=1$ ist. Wenn sich der Ausdruck nicht genau in den 2. Ausdruck umformen lässt, dann genügt mir das auch als Antwort. Allerdings sollte das Integral im 2. Ausdruck genau so aussehen.

Viele Grüße,
Uli

Bezug
        
Bezug
Integralumformung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:12 Do 21.10.2010
Autor: fred97

Mit partieller Integration bekomme ich

[mm] $\int_0^t g(f(t-s))\; \frac{d h(s)}{ds}\; [/mm] ds= h(t)*g(f(0))-h(0)g(f(t))+ [mm] \integral_{0}^{t}{h(s)*g'(f(t-s)) ds}$ [/mm]


Substituiert man im Integral rechts  u=t-s, so erhält man:

[mm] $\int_0^t g(f(t-s))\; \frac{d h(s)}{ds}\; [/mm] ds= [mm] h(t)*g(f(0))-h(0)g(f(t))-\integral_{0}^{t}{h(t-u)*g'(f(u)) du}$ [/mm]


FRED

Bezug
                
Bezug
Integralumformung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:59 Do 21.10.2010
Autor: euli

Hallo Fred,

danke für die Antwort. Ich glaube aber, es sind ein paar Fehler drin.

1. $g(f(t-s))$ muss bei der partiellen Integration nach $s$ abgeleitet werden, also $ [mm] \int_0^t g(f(t-s))\; \frac{d h(s)}{ds}\; [/mm] ds= [mm] h(t)\cdot{}g(f(0))-h(0)g(f(t))+ \integral_{0}^{t}{h(s)\cdot g'(f(t-s))\cdot f'(t-s)ds} [/mm] $.
2. Bei der anschließenden Substitution müssen die Grenzen mitsubstituiert werden, also ergibt sich [mm] $h(t)\cdot [/mm] g(f(0))-h(0)g(f(t))+ [mm] \integral_{0}^{t}{h(t-u)\cdot g'(f(u))\cdot f'(u)ds} [/mm] $.

Bitte korrigieren, wenn ich falsch liege.

Viele Grüße,
euli

Bezug
                        
Bezug
Integralumformung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:01 Do 21.10.2010
Autor: fred97


> Hallo Fred,
>  
> danke für die Antwort. Ich glaube aber, es sind ein paar
> Fehler drin.
>  
> 1. [mm]g(f(t-s))[/mm] muss bei der partiellen Integration nach [mm]s[/mm]
> abgeleitet werden, also [mm] \int_0^t g(f(t-s))\; \frac{d h(s)}{ds}\; ds= h(t)\cdot{}g(f(0))-h(0)g(f(t))+ \integral_{0}^{t}{h(s)\cdot g'(f(t-s))\cdot f'(t-s)ds} [/mm].
>  
> 2. Bei der anschließenden Substitution müssen die Grenzen
> mitsubstituiert werden, also ergibt sich [mm]h(t)\cdot g(f(0))-h(0)g(f(t))+ \integral_{0}^{t}{h(t-u)\cdot g'(f(u))\cdot f'(u)ds} [/mm].
>  
> Bitte korrigieren, wenn ich falsch liege.

Du hast recht, da sind mir ein paar "dicke Dinger" geglückt

Gruß FRED

>  
> Viele Grüße,
>  euli


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de