www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integrat. durch Polynomdivi. ?
Integrat. durch Polynomdivi. ? < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrat. durch Polynomdivi. ?: Rückfrage zu Wiki-Artikel
Status: (Frage) beantwortet Status 
Datum: 17:25 Sa 22.03.2008
Autor: Jenz

Und zwar berufe ich mich auf folgenden Artikel: http://de.wikipedia.org/wiki/Integralrechnung#Umformung_durch_Partialbruchzerlegung

Ist dies so weiter möglich, dass ich eine gebrochenrationale Funktion durch Polynomdivision vereinfachen kann und dann diese integriere? Bestehen da keine Probleme mit den Resten, die übrig bleiben können? Ist da die Quotientenregel nicht einfacher und schneller?

Ich habe diese Frage in kein anderes Forum gestellt.

        
Bezug
Integrat. durch Polynomdivi. ?: Antwort
Status: (Antwort) fertig Status 
Datum: 17:40 Sa 22.03.2008
Autor: XPatrickX

Hey!

> Und zwar berufe ich mich auf folgenden Artikel:
> http://de.wikipedia.org/wiki/Integralrechnung#Umformung_durch_Partialbruchzerlegung
>  
> Ist dies so weiter möglich, dass ich eine
> gebrochenrationale Funktion durch Polynomdivision
> vereinfachen kann und dann diese integriere?

Ja, nach der Partialbruchzerlegung kann man eine gebr.-rationale Funktion meist einfacher Integrieren.

> Bestehen da
> keine Probleme mit den Resten, die übrig bleiben können?
> Ist da die Quotientenregel nicht einfacher und schneller?
>  

Natürlich bleibt häufig ein "Rest" übrig, aber der ist meist einfacher zu handhaben. Quotientenregel benutzt man zum ableiten und nicht zum integrieren.

> Ich habe diese Frage in kein anderes Forum gestellt.

Ich denke an einem Beispiel wird das ganze deutlicher:

Ich suche: [mm] \integral_{}^{}{\frac{x^2+1,5x}{2x-1} dx} [/mm]

Eine Partialbruchzerlegung liefert:

[mm] \integral_{}^{}{\frac{x^2+1,5x}{2x-1} dx}=\integral_{}^{}{\bruch{1}{2}x+1+\frac{1}{2x-1} dx} [/mm]

Nun kann man Summandenweise integrieren und den letzten Bruch kann man hier gut als [mm] (2x-1)^{-1} [/mm] schreiben und dann aufleiten.


Gruß Patrick




Bezug
                
Bezug
Integrat. durch Polynomdivi. ?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:42 Sa 22.03.2008
Autor: Jenz

Vielen Dank,

ich meinte natürlich die Substitutionsregel, nicht die Quotientenregel.

Bezug
                        
Bezug
Integrat. durch Polynomdivi. ?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:50 Sa 22.03.2008
Autor: XPatrickX

Aber eine Substitution ist in der Regel aufwändiger als eine Partialbruchzerlegung.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de