www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integration
Integration < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration: Substitution
Status: (Frage) beantwortet Status 
Datum: 02:22 Do 27.02.2014
Autor: sonic5000

Hallo liebe Freunde der Nacht,
die Länge der folgenden Kurve im Intervall 1 bis e soll berechnet werden:

[mm] y=4,2*ln(x^3) [/mm]

Mein Ansatz :

Erste Ableitung bilden:

[mm] y'=\br{12,6}{x} [/mm]

Nun Integral bilden:

[mm] s=\integral_{1}^{e}{\wurzel{1+(\br{12,6}{x})^2}dx} [/mm]

Substitution:

[mm] u=\br{12,6}{x} [/mm]

und

u=sinh(v) [mm] \Rightarrow [/mm] du=cosh(v)*dv

Nach Anwenden des folgenden Additionstheorems:

[mm] 1=cosh^2(x)-sinh^2(x) [/mm]

komme ich auf:

[mm] \integral{\wurzel{cosh^2(v)-sinh^2(v)+sinh^2{v}}*cosh(v)dv} [/mm]

Also:

[mm] \integral{cosh^2(v)} [/mm]

Additionstheorem:

[mm] \integral{\br{1+cosh(2v)}{2}} [/mm]

[mm] \br{1}{2}(v+sinh(v)*cosh(v)) [/mm]

Rücksubstitution:

u=sinh(v) [mm] \Rightarrow [/mm] v=arsinh(u)

[mm] u=\br{12,6}{x} [/mm]

Also:

[mm] v=arsinh(\br{12,6}{x}) [/mm]

So komme ich auf folgende Stammfunktion:

[mm] \br{1}{2}(arsinh(\br{12,6}{x})+(\br{12,6}{x})*cosh(arsinh(\br{12, 6}{x}))) [/mm]

Ich komme so leider nicht auf das Ergebnis... Sieht einer den Fehler?
LG und besten Dank im Voraus...



        
Bezug
Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 03:45 Do 27.02.2014
Autor: DieAcht

Hallo,

Siehe Antwort von Sax. Ansonsten vergiss nicht, dass du die
Integrationsgrenzen auch neu berechnen musst.

DieAcht

Bezug
        
Bezug
Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 13:29 Do 27.02.2014
Autor: Sax

Hi,

im Gegensatz zur Antwort von der8 sieht das ganze weder in Ordnung aus noch ist es in Ordnung.

Der Grund ist folgender :


>  
> Nun Integral bilden:
>  
> [mm]s=\integral_{1}^{e}{\wurzel{1+(\br{12,6}{x})^2}dx}[/mm]
>  
> Substitution:
>  
> [mm]u=\br{12,6}{x}[/mm]
>  
> und
>  
> u=sinh(v) [mm]\Rightarrow[/mm] du=cosh(v)*dv
>  
> Nach Anwenden des folgenden Additionstheorems:
>  
> [mm]1=cosh^2(x)-sinh^2(x)[/mm]
>  
> komme ich auf:
>  
> [mm]\integral{\wurzel{cosh^2(v)-sinh^2(v)+sinh^2{v}}*cosh(v)dv}[/mm]
>  
> Also:
>  
> [mm]\integral{cosh^2(v)}[/mm]
>  

Du hast bei der ersten Integration dx = du  gesetzt, tatsächlich ist aber  [mm] dx=-\bruch{12,6}{u^2}\;du [/mm] zu substituieren.

Gruß Sax.


Bezug
                
Bezug
Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:12 Do 27.02.2014
Autor: sonic5000

Hallo,
O.K. Also nur mal zum Verständnis. Auch wenn sie mich hier nicht weiterbringt... Ist die folgende Substitution denn so richtig ausgeführt?

[mm] \integral{\wurzel{1+(\br{11,6}{x})^2}dx} [/mm]

Jetzt die erste Substitution:

[mm] u=\br{12,6}{x} \Rightarrow dx=-\br{x^2}{12,6}*du [/mm]

[mm] \integral{\wurzel{1+(u)^2}*-\br{x^2}{12,6}du} [/mm]

Nun die zweite Substitution:

u=sinh(u) [mm] \Rightarrow [/mm] du=cosh(v)*dv

So komme ich auf:

[mm] \integral{\wurzel{1+sinh^2(v)}*-\br{cosh(v)*x^2}{12,6}*dv} [/mm]

Wäre das formal so richtig?

LG



Bezug
                        
Bezug
Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 16:50 Do 27.02.2014
Autor: MathePower

Hallo sonic5000,

> Hallo,
>  O.K. Also nur mal zum Verständnis. Auch wenn sie mich
> hier nicht weiterbringt... Ist die folgende Substitution
> denn so richtig ausgeführt?
>
> [mm]\integral{\wurzel{1+(\br{11,6}{x})^2}dx}[/mm]
>  
> Jetzt die erste Substitution:
>  
> [mm]u=\br{12,6}{x} \Rightarrow dx=-\br{x^2}{12,6}*du[/mm]
>  
> [mm]\integral{\wurzel{1+(u)^2}*-\br{x^2}{12,6}du}[/mm]
>


Bevor die nächste Substitution angewendet werden kann,
ist hier zunächst das "x" gemäß der Substituton zu ersetzen.


> Nun die zweite Substitution:
>  
> u=sinh(u) [mm]\Rightarrow[/mm] du=cosh(v)*dv
>  
> So komme ich auf:
>  
> [mm]\integral{\wurzel{1+sinh^2(v)}*-\br{cosh(v)*x^2}{12,6}*dv}[/mm]
>  
> Wäre das formal so richtig?

>


Nein, siehe oben.


> LG
>  


Gruss
MathePower  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de