www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integration
Integration < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:31 Sa 15.10.2011
Autor: volk

Aufgabe
(1) [mm] \integral_{}^{}{\bruch{x}{cos^2(x)} dx} [/mm]
(2) [mm] \integral_{}^{}{\bruch{dx}{1+\sqrt{x}} dx} [/mm]

Hallo,
ich habe noch 2 Aufgaben, wo ich nicht weiterkomme.

Zu Aufgabe (1) habe ich keine Idee, wie ich beginnen soll und bei Aufgabe (2) habe ich [mm] x=u^2 [/mm] substituiert dann partiell integriert, dann wieder substituiert und dann wieder partiell integriert.
Als Ergebnis bekomme ich da [mm] \integral_{}^{}{\bruch{dx}{1+\sqrt{x}} dx}=2\sqrt{x}-2ln(1+\sqrt{x})+2, [/mm] wobei die 2 nicht auftaucht, wenn ich die Aufgabe zur Probe bei WolframAlpha einsetze. Kann die durch das ganze partielle Integrieren als Integrationskonstante hinzugekommen sein? Das ist bestimmt nicht der richtige Ansatz bei Aufgabe (2). Gibt es da einen besseren Ansatz?

Grüße volk

        
Bezug
Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 22:59 Sa 15.10.2011
Autor: reverend

Hallo volk,

Deine Übungsaufgaben sind offenbar aus dem Bereich partielle Integration...

> (1) [mm]\integral_{}^{}{\bruch{x}{cos^2(x)} dx}[/mm]
>  (2)
> [mm]\integral_{}^{}{\bruch{dx}{1+\sqrt{x}} dx}[/mm]
>  Hallo,
>  ich habe noch 2 Aufgaben, wo ich nicht weiterkomme.
>  
> Zu Aufgabe (1) habe ich keine Idee, wie ich beginnen soll

Na dann versuch es doch auch hier partiell: [mm] \int{x*\bruch{1}{\cos^2{(x)}}\ dx} [/mm]

Wenn Du damit nicht weiter kommst, leite doch mal [mm] \tan{x} [/mm] ab.

> und bei Aufgabe (2) habe ich [mm]x=u^2[/mm] substituiert dann
> partiell integriert, dann wieder substituiert und dann
> wieder partiell integriert.
> Als Ergebnis bekomme ich da
> [mm]\integral_{}^{}{\bruch{dx}{1+\sqrt{x}} dx}=2\sqrt{x}-2ln(1+\sqrt{x})+2,[/mm]
> wobei die 2 nicht auftaucht, wenn ich die Aufgabe zur Probe
> bei WolframAlpha einsetze. Kann die durch das ganze
> partielle Integrieren als Integrationskonstante
> hinzugekommen sein? Das ist bestimmt nicht der richtige
> Ansatz bei Aufgabe (2). Gibt es da einen besseren Ansatz?

Nein, Dein Ergebnis ist doch wunderbar. Ich frage mich nur, wo Du die +2 am Ende eigentlich her hast. Die Integrationskonstante bleibt doch auch beim partiellen Integrieren unbestimmt.

Grüße
reverend


Bezug
                
Bezug
Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:35 So 16.10.2011
Autor: volk

Hallo,
vielen Dan für deine Antwort.
Ich habe jetzt
[mm] \integral_{}^{}{\bruch{x}{cos^2(x)} dx}=x*tan(x)-\integral_{}^{}{tan(x) dx}=x*tan(x)+ln(cos(x)) [/mm]
Erst partiell integrieren und dann das Integral mit dem Tangens durch Substitution lösen.

Das zweite Integral habe ich so gelöst:
[mm] \integral_{}^{}{\bruch{dx}{1+\sqrt{x}} dx} [/mm]  setze [mm] $x=a^2$ [/mm] => $dx=2*a*da$  =>  [mm] 2*\integral_{}^{}{\bruch{a}{1+a} da} [/mm]
das jetzt partiell integrieren
u=a  u'=1
[mm] v'=\bruch{1}{1+a} [/mm]  v=ln(1+a)
[mm] 2*\integral_{}^{}{\bruch{a}{1+a} da}=2*[a*ln(1+a)-\integral_{}^{}{1*ln({1+a}) da}]=2*[a*ln(1+a)-(1+a)ln(1+a)+1+a]=2*(a-ln(1+a)+1) [/mm]
Hier kommt jetzt die +1 rein, da [mm] \integral_{}^{}{1*ln({1+a}) da}=(1+a)*ln(1+a)-(1+a) [/mm]
Somit folgt dann [mm] \integral_{}^{}{\bruch{dx}{1+\sqrt{x}} dx}=2*(\sqrt(x)-ln(1+\sqrt(x))+1) [/mm]

Grüße

volk

Bezug
                        
Bezug
Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 10:09 So 16.10.2011
Autor: fred97

Es stimmt alles. Noch ein Tipp:

[mm] \integral_{}^{}{\bruch{a}{1+a} da} [/mm] kannst Du einfacher so berechnen:

[mm] \integral_{}^{}{\bruch{a}{1+a} da}=\integral_{}^{}{\bruch{a+1-1}{1+a} da}=\integral_{}^{}{1da}-\integral_{}^{}{\bruch{1}{1+a} da} [/mm]

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de