www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integration
Integration < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:43 Mo 06.02.2012
Autor: mbau16

Aufgabe
Berechnen Sie folgenden Ausdruck:

[mm] I=\integral_{-\pi}^{\bruch{\pi}{3}}sin(3t)*(e^{-t})^{3}*dt [/mm]

Moin,

habe eine Frage an Euch.

[mm] I=\integral_{-\pi}^{\bruch{\pi}{3}}sin(3t)*(e^{-t})^{3}*dt [/mm]

1.Partielle Integration (unbestimmt):

[mm] \integral uv'=uv-\integral [/mm] u'v dt

[mm] u=(e^{-t})^{3}=e^{-3t} [/mm]

[mm] u'=-3e^{-3t} [/mm]

v'=sin(3t)

[mm] v=-\bruch{1}{3}cos(3t) [/mm]

[mm] I=e^{-3t}*\left(-\bruch{1}{3}cos(3t)\right)-\integral -3e^{-3t}*\left(-\bruch{1}{3}cos(3t)\right)*dt [/mm]

[mm] I=e^{-3t}*\left(-\bruch{1}{3}cos(3t)\right)-\integral e^{-3t}*\left(cos(3t)\right)*dt [/mm]

2.Partielle Integration (unbestimmt):

[mm] u=e^{-3t} [/mm]

[mm] u'=-3e^{-3t} [/mm]

v'=cos(3t)

[mm] v=\bruch{1}{3}sin(3t) [/mm]

[mm] I=e^{-3t}*\left(-\bruch{1}{3}cos(3t)\right)-e^{-3t}*\bruch{1}{3}sin(3t)-\integral -3e^{-3t}*\bruch{1}{3}sin(3t) [/mm] dt

[mm] I=e^{-3t}*\left(-\bruch{1}{3}cos(3t)\right)-e^{-3t}*\bruch{1}{3}sin(3t)+\integral e^{-3t}*sin(3t) [/mm] dt

[mm] I=e^{-3t}*\left(-\bruch{1}{3}cos(3t)\right)-e^{-3t}*\bruch{1}{3}sin(3t)+I [/mm]

Mein Problem ist das Vorzeichen vor dem I. Das sollte negativ sein, da ich es ja auf die andere Seite bringen muss, um an I zu kommen. Ich muss irgendwo einen Feheler gemacht haben. Könnt Ihr bitte mal schauen, ob Ihr ihn findet?

Vielen, vielen Dank!

Gruß

mbau16



        
Bezug
Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 11:04 Mo 06.02.2012
Autor: M.Rex

Hallo

Du hast:

[mm] I=\integral_{-\pi}^{\bruch{\pi}{3}}sin(3t)\cdot{}(e^{-t})^{3}\cdot{}dt [/mm]

Wenn du die Partielle Integration andersherum machst, sollte es klappen.

Also:

[mm] \int\sin(3t)\cdot e^{-3t}dt [/mm]
[mm] =\left[-\frac{1}{3}e^{-3t}\cdot\sin(3t)\right]-\int-\frac{1}{3}e^{-3t}\cdot3\cos(3t)dt [/mm]
[mm] =\left[-\frac{1}{3}e^{-3t}\cdot\sin(3t)\right]+\int\cos(3t)\cdot e^{-3t}dt [/mm]
[mm] =\left[-\frac{1}{3}e^{-3t}\cdot\sin(3t)\right]+\left[\left[-\frac{1}{3}e^{-3t}\cdot\cos(3t)\right]-\int(-3\sin(3t))\cdot\left(-\frac{1}{3}e^{-3t}\right)dt\right] [/mm]
[mm] =\left[-\frac{1}{3}e^{-3t}\cdot\sin(3t)\right]+\left[\left[-\frac{1}{3}e^{-3t}\cdot\cos(3t)\right]-\int\sin(3t)\cdot e^{-3t}dt\right] [/mm]

Jetzt kannst du das Integral auf beiden Seiten addieren.

Marius


Bezug
                
Bezug
Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:11 Mo 06.02.2012
Autor: mbau16


> Hallo
>  
> Du hast:
>  
> [mm]I=\integral_{-\pi}^{\bruch{\pi}{3}}sin(3t)\cdot{}(e^{-t})^{3}\cdot{}dt[/mm]
>  
> Wenn du die Partielle Integration andersherum machst,
> sollte es klappen.
>  
> Also:
>  
> [mm]\int\sin(3t)\cdot e^{-3t}dt[/mm]
>  
> [mm]=\left[-\frac{1}{3}e^{-3t}\cdot\sin(3t)\right]-\int-\frac{1}{3}e^{-3t}\cdot3\cos(3t)dt[/mm]
>  
> [mm]=\left[-\frac{1}{3}e^{-3t}\cdot\sin(3t)\right]+\int\cos(3t)\cdot e^{-3t}dt[/mm]
> [mm]=\left[-\frac{1}{3}e^{-3t}\cdot\sin(3t)\right]+\left[\left[-\frac{1}{3}e^{-3t}\cdot\cos(3t)\right]-\int(-3\sin(3t))\cdot\left(-\frac{1}{3}e^{-3t}\right)dt\right][/mm]
> [mm]=\left[-\frac{1}{3}e^{-3t}\cdot\sin(3t)\right]+\left[\left[-\frac{1}{3}e^{-3t}\cdot\cos(3t)\right]-\int\sin(3t)\cdot e^{-3t}dt\right][/mm]
>
> Jetzt kannst du das Integral auf beiden Seiten addieren.
>  
> Marius

Hallo,

danke für Deine schnelle Antwort. Aber es müsste doch auch mit meiner Version klappen, oder kann es passieren, dass ich mein u und v# wechseln muss?

Gruß

mbau16

>  


Bezug
                        
Bezug
Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 11:14 Mo 06.02.2012
Autor: M.Rex


> > Hallo
>  >  
> > Du hast:
>  >  
> >
> [mm]I=\integral_{-\pi}^{\bruch{\pi}{3}}sin(3t)\cdot{}(e^{-t})^{3}\cdot{}dt[/mm]
>  >  
> > Wenn du die Partielle Integration andersherum machst,
> > sollte es klappen.
>  >  
> > Also:
>  >  
> > [mm]\int\sin(3t)\cdot e^{-3t}dt[/mm]
>  >  
> >
> [mm]=\left[-\frac{1}{3}e^{-3t}\cdot\sin(3t)\right]-\int-\frac{1}{3}e^{-3t}\cdot3\cos(3t)dt[/mm]
>  >  
> >
> [mm]=\left[-\frac{1}{3}e^{-3t}\cdot\sin(3t)\right]+\int\cos(3t)\cdot e^{-3t}dt[/mm]
> >
> [mm]=\left[-\frac{1}{3}e^{-3t}\cdot\sin(3t)\right]+\left[\left[-\frac{1}{3}e^{-3t}\cdot\cos(3t)\right]-\int(-3\sin(3t))\cdot\left(-\frac{1}{3}e^{-3t}\right)dt\right][/mm]
> >
> [mm]=\left[-\frac{1}{3}e^{-3t}\cdot\sin(3t)\right]+\left[\left[-\frac{1}{3}e^{-3t}\cdot\cos(3t)\right]-\int\sin(3t)\cdot e^{-3t}dt\right][/mm]
> >
> > Jetzt kannst du das Integral auf beiden Seiten addieren.
>  >  
> > Marius
>  
> Hallo,
>  
> danke für Deine schnelle Antwort. Aber es müsste doch
> auch mit meiner Version klappen, oder kann es passieren,
> dass ich mein u und v# wechseln muss?
>  
> Gruß
>  
> mbau16

Du musst in der Tat wechseln, das ist ein bekanntes Problem bei der Partiellen Itegration, das bei der einen Wahl von u und v' das Integral herausfallen würde, bei der anderen Wahl kann man aber addieren.
Du hast also keinen Fehler gemacht, nur unglücklich gewählt.

Marius


Bezug
                                
Bezug
Integration: Dank an Marius
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:18 Mo 06.02.2012
Autor: mbau16

Vielen Dank für die Hilfe!

Gruß

mbau16

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de