www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrieren und Differenzieren" - Integration (2)
Integration (2) < Integr.+Differenz. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration (2): Konvergenz
Status: (Frage) beantwortet Status 
Datum: 11:23 Di 19.01.2010
Autor: s3rial_

Aufgabe
[mm] \integral_{0}^{\pi}{cot(x) dx} [/mm]

Hallo,
habe wieder eine Aufgabe, wo es bei mir an einer Stelle hackt und wo ich fragen wollte, ob ich dass auch so machen darf:

[mm] \integral_{0}^{\pi}{cot(x) dx} =\limes_{t \rightarrow \pi} \integral_{0}^{t}{\bruch{cos(x)}{sin(x)} dx} [/mm]

Sub.: z=sin(x), z'=cos(x), [mm] dx=\bruch{dx}{cos(x)} [/mm]

[mm] \limes_{t \rightarrow \pi} \integral_{0}^{sin(t)}{\bruch{1}{z} dz} [/mm] = [mm] \limes_{t \rightarrow \pi} [/mm] ln(z)//Grenzen sin(t) und 0

Dann habe ich gemerkt das nun 0 auch Kritisch ist, da habe ich folgendes gemacht.

[mm] \limes_{t \rightarrow \pi, y\rightarrow 0} [/mm] ln(z)//Grenzen sin(t) und y

[mm] \limes_{t \rightarrow \pi, y\rightarrow 0} [/mm] ln(sin(t))- ln(y)

ln(y) wird [mm] -\infty [/mm] und ln(sin(t)) nähert sich stark an [mm] \pi [/mm] also wird der sinus Null, wobei mir die Funktion dabei Kaputt geht.

2 Fragen
1. durfte ich den Limes so erweitern?
2. Ist der letzte Satz die Begründung dafür, dass die Funktion nicht konvergiert? Also wenn ich einen Ungültigen Term erreiche, konvergiert eine Funktion nicht?

danke schonmal
gruß
s3


        
Bezug
Integration (2): Antwort
Status: (Antwort) fertig Status 
Datum: 11:44 Di 19.01.2010
Autor: fencheltee


> [mm]\integral_{0}^{\pi}{cot(x) dx}[/mm]
>  Hallo,
> habe wieder eine Aufgabe, wo es bei mir an einer Stelle
> hackt und wo ich fragen wollte, ob ich dass auch so machen
> darf:
>  
> [mm]\integral_{0}^{\pi}{cot(x) dx} =\limes_{t \rightarrow \pi} \integral_{0}^{t}{\bruch{cos(x)}{sin(x)} dx}[/mm]

hier siehst du durch die schreibweise mit sin und cos, dass 0 und [mm] \pi [/mm] für den term nicht definiert sind, schreibe also dann erstmal um in
[mm] \limes_{t \rightarrow 0} \integral_{t}^{t+\pi}{\bruch{cos(x)}{sin(x)} dx} [/mm]
irgendwann kommst du dann auf
[mm] \limes_{t \rightarrow 0} ln|z|\Big|_{sin(t)}^{sin(t+\pi)}=\limes_{t \rightarrow 0}ln|sin(t+\pi)|-ln|sin(t)|=\limes_{t \rightarrow 0}ln|-sin(t)|-ln|sin(t)|=0 [/mm]

>
> Sub.: z=sin(x), z'=cos(x), [mm]dx=\bruch{dx}{cos(x)}[/mm]
>  
> [mm]\limes_{t \rightarrow \pi} \integral_{0}^{sin(t)}{\bruch{1}{z} dz}[/mm]
> = [mm]\limes_{t \rightarrow \pi}[/mm] ln(z)//Grenzen sin(t) und 0
>  
> Dann habe ich gemerkt das nun 0 auch Kritisch ist, da habe
> ich folgendes gemacht.
>  
> [mm]\limes_{t \rightarrow \pi, y\rightarrow 0}[/mm] ln(z)//Grenzen
> sin(t) und y
>  
> [mm]\limes_{t \rightarrow \pi, y\rightarrow 0}[/mm] ln(sin(t))-
> ln(y)
>  
> ln(y) wird [mm]-\infty[/mm] und ln(sin(t)) nähert sich stark an [mm]\pi[/mm]
> also wird der sinus Null, wobei mir die Funktion dabei
> Kaputt geht.
>
> 2 Fragen
>  1. durfte ich den Limes so erweitern?

ich denke, dass es bei den meisten fällen schwierig wird, beide grenzwerte in den griff zu kriegen, von daher mach das mal lieber nur mit einer variablen mit grenzwert. die andere lässt sich ja wie oben dadurch ausdrücken

>  2. Ist der letzte Satz die Begründung dafür, dass die
> Funktion nicht konvergiert? Also wenn ich einen Ungültigen
> Term erreiche, konvergiert eine Funktion nicht?

dein letzter rechenschritt zeigt ja [mm] -\infty-(-\infty)=? [/mm] nun und sowas kann halt alles sein. ob das integral dann nun existiert musst du dann schon noch näher untersuchen. und in diesem fall existiert er ja auch

>  
> danke schonmal
>  gruß
>  s3
>  

gruß tee

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de