www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integration Beweis
Integration Beweis < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration Beweis: Idee
Status: (Frage) beantwortet Status 
Datum: 18:57 Mo 07.06.2010
Autor: Mimuu

Aufgabe
Sei f:[0,1] --> [mm] \IR [/mm] eine zweimal stetig differenzierbare Funktion. Zeige: Dann gibt es ein a,b [mm] \in \IR, [/mm] sodass

f(x) = [mm] a+bx+\bruch{1}{2}\integral_{0}^{1}{f''(t)*|t-x| dt} [/mm]
für alle [mm] x\in [/mm] [0,1]

Kann mir jemand einen Tipp geben, wie ich an die Aufgabe rangehen kann? ich habe schon mal versucht, dass Integral zu berechnen, aber das ist der falsche Weg.

        
Bezug
Integration Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 19:43 Mo 07.06.2010
Autor: kevin314

Hi,

das sieht doch sehr nach Taylorentwicklung aus, nur leider stimmt das Restglied nicht ganz - vielleicht kannst Du damit was basteln?

Bezug
                
Bezug
Integration Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:48 Mo 07.06.2010
Autor: Mimuu

Was eine Taylorentwicklung ist, weiß ich, aber ich kann jetzt keinen Bezug zu der Aufgabe herstellen.
Kannst du mir vielleicht noch ein bisschen weiterhelfen?

Bezug
                        
Bezug
Integration Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 07:41 Di 08.06.2010
Autor: fred97

Tipp: https://matheraum.de/read?i=690567

FRED

Bezug
        
Bezug
Integration Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 07:40 Di 08.06.2010
Autor: fred97

Setze

           [mm] $g(x)=\bruch{1}{2}\integral_{0}^{1}{f''(t)\cdot{}|t-x| dt} [/mm] $

zeige nun, dass g 2-mal differenzierbar ist und $g''=f''$ auf [0,1] ist

FRED

Bezug
                
Bezug
Integration Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:00 Di 08.06.2010
Autor: Mimuu

wie kann ich denn ein Integral ableiten, bzw. sogar zweimal ableiten?

Bezug
                        
Bezug
Integration Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 16:57 Do 10.06.2010
Autor: MathePower

Hallo Mimuu,

> wie kann ich denn ein Integral ableiten, bzw. sogar zweimal
> ableiten?


Da die Integrationsgrenzen nicht von x abhängig sind
ergibt sich die Ableitung zu:

[mm]g'\left(x\right)=\bruch{d}{dx}\bruch{1}{2}\integral_{0}^{1}{f''(t)\cdot{}|t-x| dt}=\bruch{1}{2}\integral_{0}^{1}{\bruch{d}{dx}\left( \ f''(t)\cdot{}|t-x| \ \right) \ dt}[/mm]


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de