www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathematica" - Integration Exponentialfunktio
Integration Exponentialfunktio < Mathematica < Mathe-Software < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathematica"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration Exponentialfunktio: Tipp, Idee
Status: (Frage) beantwortet Status 
Datum: 16:08 Fr 29.01.2010
Autor: drafter0815

Aufgabe
Integration Exponentialfunktion mit Mathematica;
finden einer geeigneten Substitution;

Hallo,
ich möchte folgendes Integral mit Mathematica lösen:

[Dateianhang nicht öffentlich]

Mathematica bricht nach einer gewissen Zeit ab.
Habe schon versucht das Integral auszumultiplizieren und einzeln zu Integrieren. Jedoch ohne Erfolg.
Eine geeignete Substitution zu finden habe ich begonnen,
jedoch ist es schon eine weile her als ich in diesem Thema richtig fit war.
Wollte daher fragen, welche Möglichkeiten ich noch habe ?
Eine Reihenentwicklung oder soetwas in die Richtung ?
Geeignete Substitution ?

Mfg
drafter

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Integration Exponentialfunktio: Antwort
Status: (Antwort) fertig Status 
Datum: 23:10 Fr 29.01.2010
Autor: Frasier

Hallo drafter,
wenn du Werte für die Variablen hast, könntest du versuchen, das numerisch zu integrieren; mit einer ausreichend großen Zahl als Ersatz für "Unendlich".
Aber könntest du zum einen das Bild verkleinern?
Oder noch besser, du kopierst den Mathematica-Input hier rein, dann kann man das direkt übertragen. Abtippen wird das wohl niemand.
lg
F.

Bezug
        
Bezug
Integration Exponentialfunktio: Antwort / Mathematica Formel
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:26 Sa 30.01.2010
Autor: drafter0815

Hallo Frasier,
ich habe es geschafft numerisch zu integrieren.
Das Funktioniert soweit ganz gut.
Ich hätte trotzdem gerne das ganze symbolisch gelöst.
Habe viel Arbeit in die derzeitige Formel rein gesteckt.
Und jetzt fehlt mir noch noch dieses letzte Integral.
So Hier nochmal das Integral in TeX:


[mm] \begin{array}{cc} \int_0^{\infty } \frac{e^{-\frac{\mu _1^2}{2 \sigma _1^2}-\frac{\mu _2^2}{2 \sigma _2^2}} \left(2 \sigma _1 \sigma _2 \sqrt{\sigma _1^2+v^2 \sigma _2^2}+e^{\frac{\left(\mu _2 \sigma _1^2+v \mu _1 \sigma _2^2\right){}^2}{2 \sigma _1^2 \sigma _2^2 \left(\sigma _1^2+v^2 \sigma _2^2\right)}} \sqrt{2 \pi } \left(1+\text{Erf}\left[\frac{\mu _2 \sigma _1^2+v \mu _1 \sigma _2^2}{\sqrt{2} \sigma _1 \sigma _2 \sqrt{\sigma _1^2+v^2 \sigma _2^2}}\right]\right) \left(\mu _2 \sigma _1^2+v \mu _1 \sigma _2^2\right)\right) \left(\frac{e^{-\frac{\left(\sqrt{\frac{s}{v}}-\mu _3\right){}^2}{2 \sigma _3^2}}}{2 \sqrt{2 \pi } \sqrt{\frac{s}{v}} \sigma _3}+\frac{e^{-\frac{\left(\sqrt{\frac{s}{v}}+\mu _3\right){}^2}{2 \sigma _3^2}}}{2 \sqrt{2 \pi } \sqrt{\frac{s}{v}} \sigma _3}\right)}{4 \pi v \left(\sigma _1^2+v^2 \sigma _2^2\right){}^{3/2}} \, dv & s>0 \end{array} [/mm]

Habe gestern nochmal in den Papula geguckt.
Evtl. wäre eine geeignete Substitution etwas mit v = ln x oder so ähnlich ...??


Vielen Dank schon mal für die Antwort
Mfg
drafter


Bezug
        
Bezug
Integration Exponentialfunktio: Antwort
Status: (Antwort) fertig Status 
Datum: 00:38 Do 04.02.2010
Autor: halirutan

Moin,

obwohl ich nicht denke, dass man das analytisch geloest bekommt... aber wenn dich Frasier fragt, ob du nicht einmal den Mathematica-Input hierher kopieren kannst, dann mach das doch auch mal. Das Riesending will doch keiner abtippen!

Cheers
Patrick

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathematica"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de