www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integration Logarithmus
Integration Logarithmus < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration Logarithmus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:53 Mo 17.03.2008
Autor: Juliane04

Aufgabe
[mm] \integral_{a}^{b}{ln(2x+3) dx} [/mm]
[mm] \integral_{a}^{b}{x*ln(x^{2}+1) dx} [/mm]

Hallo ihr Lieben!

Hab ne Frage zu obiger Integration. Hab die erste mittels Substitution gelöst. Hab 2x+3=z ersetzt. Das müsste doch so gehen oder gibt es eine bessere Lösung?

Bei der 2. bin ich ein wenig unsicher. Hab Produktintegration und Substitution verwendet, aber irgendwie scheint da noch ein Fehler drin zu sein:
[mm] \integral_{a}^{b}{x*ln(x^{2}+1) dx} [/mm]
NR: u=x
u'=1
[mm] v'=ln(x^{2}+1) [/mm]
[mm] v=(\bruch{1}{2x})*((x^{2}+1)*ln(x^{2}+1)-(x^{2}+1)) [/mm]
Hab dazu wieder [mm] x^{2}+1 [/mm] durch z ersetzt.
[mm] \integral_{a}^{b}{ln(x^{2}+1) dx} [/mm]
[mm] z=x^{2}+1 [/mm]
[mm] z'(x)=\bruch{dz}{dx}=2x [/mm]
[mm] dx=\bruch{1}{2x}*dz [/mm]
also [mm] \integral_{a}^{b}{ln (z)*\bruch{1}{2x}dz} [/mm]
[mm] =\bruch{1}{2x}*\integral_{a}^{b}{ln(z) dz} [/mm]
[mm] =\bruch{1}{2x}*(z*ln(z)-z) [/mm]
[mm] =\bruch{1}{2x}*((x^{2}+1)*ln(x^{2}+1)-(x^{2}+1)) [/mm]
Liegt hier schon der Fehler?
und nun mit dem Obigen zusammenführen:
[mm] \integral_{a}^{b}{x*ln(x^{2}+1) dx} [/mm]
= [mm] \bruch{1}{2x}*((x^{2}+1)*ln(x^{2}+1)-(x^{2}+1))*x-\integral_{a}^{b}{x*ln(x^{2}+1) dx} [/mm]
dann hab ich das einfach zur rechten Seite addiert und durch 2 dividiert:
[mm] 2*\integral_{a}^{b}{x*ln(x^{2}+1) dx} [/mm]
[mm] =\bruch{1}{2}*((x^{2}+1)*ln(x^{2}+1)-(x^{2}+1)) [/mm]

[mm] \integral_{a}^{b}{x*ln(x^{2}+1) dx} [/mm]
[mm] =\bruch{1}{4}*((x^{2}+1)*ln(x^{2}+1)-(x^{2}+1)) [/mm]

Aber im Taschenrechner wird als Ergebnis [mm] \bruch{1}{2}*((x^{2}+1)*ln(x^{2}+1)-(x^{2}+1))angezeigt. [/mm] Wo liegt denn hier nur der Fehler? Bin langsam betriebsblind und find ihn nicht mehr.

Danke für eure Hilfe!



        
Bezug
Integration Logarithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 17:25 Mo 17.03.2008
Autor: MathePower

Hallo Juliane04,

> [mm]\integral_{a}^{b}{ln(2x+3) dx}[/mm]
>  
> [mm]\integral_{a}^{b}{x*ln(x^{2}+1) dx}[/mm]
>  Hallo ihr Lieben!
>  
> Hab ne Frage zu obiger Integration. Hab die erste mittels
> Substitution gelöst. Hab 2x+3=z ersetzt. Das müsste doch so
> gehen oder gibt es eine bessere Lösung?

Die Idee mit der Substitution ist richtig.

>  
> Bei der 2. bin ich ein wenig unsicher. Hab
> Produktintegration und Substitution verwendet, aber
> irgendwie scheint da noch ein Fehler drin zu sein:
>  [mm]\integral_{a}^{b}{x*ln(x^{2}+1) dx}[/mm]
>  NR: u=x
>  u'=1
>  [mm]v'=ln(x^{2}+1)[/mm]
>  [mm]v=(\bruch{1}{2x})*((x^{2}+1)*ln(x^{2}+1)-(x^{2}+1))[/mm]

Andersrum ist es besser: [mm]u=\ln\left(x^{2}+1}\right), v'=x[/mm]

>  Hab dazu wieder [mm]x^{2}+1[/mm] durch z ersetzt.
>  [mm]\integral_{a}^{b}{ln(x^{2}+1) dx}[/mm]

Hier ist ein x verlorengegangen:

[mm]\integral_{}^{}{\red{x}*\ln\left(x^{2}+1\right) dx}[/mm]

>  [mm]z=x^{2}+1[/mm]
>  [mm]z'(x)=\bruch{dz}{dx}=2x[/mm]
>  [mm]dx=\bruch{1}{2x}*dz[/mm]
>  also [mm]\integral_{a}^{b}{ln (z)*\bruch{1}{2x}dz}[/mm]
>  
> [mm]=\bruch{1}{2x}*\integral_{a}^{b}{ln(z) dz}[/mm]
>  
> [mm]=\bruch{1}{2x}*(z*ln(z)-z)[/mm]
>  [mm]=\bruch{1}{2x}*((x^{2}+1)*ln(x^{2}+1)-(x^{2}+1))[/mm]
>   Liegt hier schon der Fehler?
>  und nun mit dem Obigen zusammenführen:
>  [mm]\integral_{a}^{b}{x*ln(x^{2}+1) dx}[/mm]
>  =
> [mm]\bruch{1}{2x}*((x^{2}+1)*ln(x^{2}+1)-(x^{2}+1))*x-\integral_{a}^{b}{x*ln(x^{2}+1) dx}[/mm]
>  
> dann hab ich das einfach zur rechten Seite addiert und
> durch 2 dividiert:
>  [mm]2*\integral_{a}^{b}{x*ln(x^{2}+1) dx}[/mm]
>  
> [mm]=\bruch{1}{2}*((x^{2}+1)*ln(x^{2}+1)-(x^{2}+1))[/mm]
>  
> [mm]\integral_{a}^{b}{x*ln(x^{2}+1) dx}[/mm]
>  
> [mm]=\bruch{1}{4}*((x^{2}+1)*ln(x^{2}+1)-(x^{2}+1))[/mm]
>  
> Aber im Taschenrechner wird als Ergebnis
> [mm]\bruch{1}{2}*((x^{2}+1)*ln(x^{2}+1)-(x^{2}+1))angezeigt.[/mm] Wo
> liegt denn hier nur der Fehler? Bin langsam betriebsblind
> und find ihn nicht mehr.

Die Substitution, die Du angewendet hast, ist richtig.

Es ist [mm]z=x^{2}+1[/mm], damit [mm]dz=2x \ dx \Rightarrow x dx = \bruch{1}{2} dz[/mm].

Daher gilt:

[mm]\integral_{}^{}{x*\ln\left(x^{2}+1\right) dx} = \integral_{}^{}{\ln\left(x^{2}+1\right)*x \ dx} = \bruch{1}{2}*\integral_{}^{}{\ln\left(z\right) \ dz}[/mm]

Das Integral kannst Du via partieller Integration berechnen:

[mm]\integral_{}^{}{\ln\left(z\right) \ dz}=z*\ln\left(z\right) - \integral_{}^{}{z*\bruch{1}{z} \ dz}=\integral_{}^{}{1 \ dz}=z*\ln\left(z\right)-z[/mm]

Dann gilt:

[mm]\integral_{}^{}{x*\ln\left(x^{2}+1\right) dx} =\bruch{1}{2}*\integral_{}^{}{\ln\left(z\right) \ dz}=\bruch{1}{2}*\left(z*\ln\left(z\right) - z\right) [/mm]
[mm]=\bruch{1}{2}z*\left(\ln\left(z\right) - 1\right)=\bruch{1}{2}\left(x^{2}+1\right)*\left(\ln\left(x^{2}+1\right) - 1\right)[/mm]

Und das stimmt mit dem Ergebnis im Taschenrechner überein.

>  
> Danke für eure Hilfe!
>  
>  

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de